CCOG for G 203 archive revision 201904
You are viewing an old version of the CCOG. View current version »
- Effective Term:
- Fall 2019
- Course Number:
- G 203
- Course Title:
- Evolution of Planet Earth
- Credit Hours:
- 4
- Lecture Hours:
- 30
- Lecture/Lab Hours:
- 0
- Lab Hours:
- 30
Course Description
Addendum to Course Description
Historical Geology is intended for both geology majors and non-majors, and is the third term of a year of beginning college geology. This course can be used to partly fulfill graduation requirements for the Associate Degree, and has been approved for block transfer. The text and materials have been chosen by the faculty and the emphasis of the course will be the viewpoint of the author(s). This includes the concepts of geologic time and the evolution of the Earth.
Regarding the teaching of basic geologic principles (such as geologic time and the theory of evolution), the Portland Community College Geology Department stands by the following statements about what is science.
- Science is a fundamentally non-dogmatic and self-correcting investigatory process. A scientific theory is neither a guess, dogma, nor myth. The theories developed through scientific investigation are not decided in advance, but can be and often are modified and revised through observation and experimentation.
- “Creation science,” also known as scientific creationism, is not considered a legitimate science, but a form of religious advocacy. This position is established by legal precedence (Webster v. New Lenox School District #122, 917 F.2d 1004).
- Geology instructors at Portland Community College will teach the generally accepted basic geologic principles (such as geologic time and the theory of evolution) not as absolute truth, but as the most widely accepted explanation for our observations of the world around us.
- Because “creation science”, “scientific creationism”, and “intelligent design” are essentially religious doctrines that are at odds with open scientific inquiry, the Geology/General Sciences SAC at Portland Community College stands with such organizations as the National Association of Geoscience Teachers, the American Geophysical Union, the Geological Society of America, and the American Geological Institute in excluding these doctrines from our science curriculum.
Students are expected to be able to read and comprehend college-level science texts and perform basic mathematical operations in order to successfully complete this course.
Intended Outcomes for the course
Upon completion of the course students should be able to:
- Use an understanding of sedimentary rock and fossil characterization and classification to infer the past environments recorded in specific geologic areas.
- Analyze how relative and absolute dating have been used to construct and refine the geological time scale.
- Use their understanding of earth systems and biological evolution to explain major events in the geologic record.
- Access earth science information from a variety of sources, evaluate the quality of this information, and compare this information with current models of earth history, identifying areas of congruence and discrepancy.
- Make field and laboratory-based observations and measurements of landscapes, rocks and fossils, use scientific reasoning to interpret these observations and measurements, and compare the results with of current models of earth history, identifying areas of congruence and discrepancy.
- Assess the contributions of historical geology to our evolving understanding of global change and sustainability while placing the development of historical geology in its historical and cultural context.
Quantitative Reasoning
Students completing an associate degree at Portland Community College will be able to analyze questions or problems that impact the community and/or environment using quantitative information.
Course Activities and Design
The material in this course will be presented in a combination of lecture/discussion and laboratory exercises. Other educationally sound methods may be employed such as guest lectures, field trips, research papers, and small group work.
Outcome Assessment Strategies
At the beginning of the course, the instructor will detail the methods used to evaluate student progress and the criteria for assigning a course grade. The methods may include one or more of the following tools: examinations, quizzes, homework assignments, laboratory write-ups, research papers, small group problem solving of questions arising from application of course concepts and concerns to actual experience, oral presentations, or maintenance of a personal work journal.
Course Content (Themes, Concepts, Issues and Skills)
- Discuss the evidence supporting the theory of plate tectonics
- Explore the geologic and fossil record for each of the major geologic eons and eras
- Discuss the evidence supporting the theory of evolution
- Describe and use the geologic time scale
- Explore the basic concepts involved in radiometric dating
- Discuss the principles used in relative dating
- Examine common invertebrate fossils
Topics to be covered include:
- Plate Tectonics (may be covered in G201)
- Alfred Wegener and evidence for continental drift
- Magnetic reversals and sea-floor spreading
- Using hot spots to determine plate motion
- Rifting and the origin of ocean basins
- Features associated with each type of plate boundary (divergent, convergent, transform)
- Ophiolites
- Subduction and related volcanism
- Continental collisions and relationship to mountain building
- Convection as a driving force of plate tectonics
- Geologic Time
- Uniformitarianism
- Principles of relative dating (horizontality, superposition, cross-cutting relations, inclusions, faunal succession)
- Unconformities (angular unconformity, disconformity, nonconformity)
- Correlation
- Radiometric Dating (isotopes, half-life, parent and daughter isotopes)
- Other absolute dating techniques (tree-rings, varves, lichenometry)
- Geologic time scale
- Statigraphy
- Stratigraphic units (formation, group, etc.)
- Time-rock unit
- Evidence for changing sea level
- Fossils and evidence for evolution
- Index fossils
- Precambrian
- Divisions of Precambrian time (Hadean, Archean, Proterozoic)
- Formation of the Earth and Moon as members of the solar system
- Speculation on the conditions on the Earth during the Hadean
- Archean crust
- Origin of continents
- Granulite gneiss/greenstone belts
- Crustal provinces of North America and assembly of Laurentia and Rodinia during the Proterozoic
- Wilson cycles
- Early atmosphere
- Precambrian ice ages
- Origin of Life
- Indirect evidence of Life through carbon isotopes in Isua formation ~ 3.8 by ago
- Cyanobacteria in 3.5 by Australian cherts
- Stromatolites
- Prokaryotic vs. eukaryotic cells
- Ediacaran Fauna
- Paleozoic
- Divisions of the Paleozoic
- Transgressions and Regressions (Sauk, Tippecanoe, Kaskaskia, Absaroka)
- Orogenies (Taconic, Caledonian, Acadian, Antler, Ouachita, Allegheny/Hercynian)
- Assembly of Pangea
- Clastic wedges
- Cyclothems
- Cambrian Explosion
- Burgess shale
- Trilobites
- Brachiopods vs. Mollusks
- Foraminifera
- Paleozoic Reefs (archeocyathids, corals, sponges, bryozoans)
- Emergence of Fish (jawless, jawed, ray- and lobe-finned)
- Emergence of amphibians and reptiles (amniotic egg)
- Plants invade land
- Great Permian Extinction
- Mesozoic
- Divisions of the Mesozoic
- Orogenies (Sonoma, Nevadan, Sevier, Laramide)
- Breakup of Pangea
- Cretaceous transgression
- Dinosaurs, marine reptiles, and flying reptiles
- First birds and mammals
- Angiosperms (flowering and deciduous plants)
- K-T extinction
- Cenozoic
- Divisions of the Cenozoic
- Alpine-Himalayan Belt
- Laramide orogeny
- Colorado Plateau
- Basin and Range
- Pleistocene ice ages
- Radiation of mammals
- Human origins