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1 Linear Systems

1.1 What is Linear Algebra?

Linear algebra is the branch of
mathematics concerning linear
equations such as

a1x1 + · · ·+ anxn = b,

linear functions such as
(x1, . . . , xn) 7→ a1x1+ · · ·+anxn,
and their representations in
vector spaces and through
matrices.

Wikipedia
Accessed March 20, 2020

If arithmetic is the foundational language of society, and if algebra is the foundational lan-
guage of calculus, then linear algebra is the foundational language of STEM.

Each linear algebra course that is taught follows a very different flow. It is important to note
that linear algebra is a complete branch of mathematics (as opposed to number theory or
topology), and because it is so versatile and complete, any particular entry point or direction
that the course tends to will generate a completely different course experience.

This particular version of the course will generate a very mathematics-based course. We
will focus on the intricacies and interplay of theory and definition. Computation will
simply be a vehicle to get to interpretation. We will basically learn one tool (only a slight
exaggeration), but then we will spend a vast number of hours on

1. When to use this tool.

2. What to use this tool.

3. How to transform our information into something on which this tool can be used.

4. How to interpret the results of using this tool.

In this section, we will introduce a lot of terminology (in order to set a baseline for conver-
sation), introduce matrices, and see how matrices play a role in solving linear systems.
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1.2 Preliminary Definitions

Let’s begin with a handful of definitions to put us all on the same page.

Definition

A linear equation is one of the form a1x1 + a2x2 + · · · + anxn = b. The numbers
a1, a2, . . . , an, b ∈ C (usually R) are the coefficients.

Definition

A linear system is a collection of one or more simultaneous linear equations in the
same variables.

Definition

A solution of the system is a list of numbers (s1, s2, . . . , sn) that, when substituted
into x1, x2, . . . , xn respectively, satisfies all equations in the system simultaneously.

Definition

The set of all possible solutions of a system is the solution set.

Definition

Two systems that have the same solution set are called equivalent systems.

Now let’s explore linear systems in two variables.

Example 1. In a linear system with two variables, what are the possible number of solutions
for the system? Draw a graph to represent each possibility.
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Proposition

A system of linear equations (in any number of equations and variables) has either

• No solutions,

• Exactly one solution, or

• Infinitely many solutions.

Definition

A system that has at least one solution is consistent.

Definition

A system that has no solutions is inconsistent.

We will spend a good amount of time determining either

• The solution set of a linear system,

• Whether a system is consistent or inconsistent (regardless of the actual solution), or

• If a system is consistent, then how many solutions does it have (regardless of the actual
solution).

We can categorize linear systems as such.

Consistent

Unique Solution

Infinitely Many Solutions

Inconsistent

No Solutions
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1.3 Matrices

The object of study for most students who take a linear algebra class is the matrix. Any
system can be compressed into its essential information using a rectangular array called a
matrix (plural: matrices).

Definition

A rectangular array of entries (typically numbers) is called a matrix.

Consider the linear system

5x1 − x2 + 2x3 = 7
−2x1 + 6x2 + 9x3 = 0
−7x1 + 5x2 − 3x3 = −7

This system can be represented by a matrix in several ways. Here are two ways.

 5 −1 2
−2 6 9
−7 5 −3

 or

 5 −1 2 7
−2 6 9 0
−7 5 −3 −7


Definition

A matrix that represents the coefficients of variables in a linear system is called a
coefficient matrix of the system.

Definition

A matrix that represents the coefficients of variables as well as the coefficient on the
opposite side of an equals sign is called an augmented matrix of the system.

Definition

The size of a matrix tells how many rows and columns it has. The size of the matrix
is given in m×n form, where m is the number of rows and n is the number of columns.
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Example 2. What are the sizes of each of the matrices below?

 5 −1 2
−2 6 9
−7 5 −3



[
0 2
0 −1

]


x1
x2
x3
x4



 5 −1 2 7
−2 6 9 0
−7 5 −3 −7



α β γ
δ ε ζ
η θ ι



[
x1 x2 x3 x4

]
1.4 Solving a System of Linear Equations

In algebra classes, we are typically taught to solve systems of linear equations using three
strategies: substitution, elimination (sometimes called the addition method), and replace-
ment (often referred to as simplifying).

Example 3. Solve the following system without substitution.

x1− 2x2+ x3 = 0

2x2− 8x3 = 8

5x1 − 5x3 = 10
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Continued...
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1.5 Elementary Row Operations

The strategies used in the previous example are used thoroughly in a process we will come
to know as row reduction. Three basic operations can be used on matrices to produce a
different matrix (with particular properties).

Definition

The Elementary Row Operations are Scaling, Interchange, and Replacement.

• Scaling – Multiply all entries in a row by a nonzero constant.

• Interchange – Interchange two rows.

• Replacement – Replace one row by the sum of itself and a multiple of another
row (“Add to one row a multiple of another row”).

Definition

Two matrices are row equivalent if there is a sequence of elementary row operations
that transforms one matrix into the other.

Note: The elementary row operations are reversible!

Proposition

If the augmented matrices of two linear systems are row equivalent, then the two
systems have the same solution set.

This means that instead of solving systems of equations using the algebra strategies you may
have used before, we will solve linear systems using matrices!
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2 Row Reduction & Echelon Forms

2.1 REF & RREF Forms

In the last section, we performed an algorithm to achieve a goal called “row reduction”. In
this section, we’ll introduce more terminology, discuss the advantages and disadvantages of
different types of row reduced forms, and we’ll introduce a process called Gaussian Elimina-
tion.

Definition

In a matrix, the leading entry of a row is the leftmost nonzero entry in a nonzero
row.

Example 1. Identify the leading entry of each of the rows of the following matrix or deter-
mine if no leading entry exists.


0 0 3 2 0
0 1 − 0 1
−9 3 0 −4 −1
0 0 0 0 0



Definition

A matrix is in echelon form (or row echelon form or REF) if it has the following
properties:

• All nonzero rows are above any zero rows.

• Each leading entry of a row is in a column to the right of the leading entry of
the row above it.

• All entries in a column beneath a leading entry are zero.

Example 2. The matrix 
0 0 1 2
1 2 3 4
0 0 0 0
0 0 0 1


is not in echelon form. Explain in as much detail as possible why.

On the other hand,


1 2 3 4
0 0 1 2
0 0 0 1
0 0 0 0

 is in echelon form.
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Definition

A matrix is in reduced echelon form (or row reduced echelon form or RREF)
if it has the following properties:

• The matrix is in echelon form.

• The leading entry in each nonzero row is 1.

• Each leading 1 is the only nonzero entry in its column.

Example 3. The matrix 
0 0 1 2
1 2 3 4
0 0 0 0
0 0 0 1


is not in reduced echelon form. Explain in as much detail as possible why.

Example 4. The matrix 
1 2 3 4
0 0 1 2
0 0 0 1
0 0 0 0


is not in reduced echelon form. Explain in as much detail as possible why.

On the other hand,


1 2 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 is in reduced echelon form.
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Definition

A matrix that is in echelon form is called an echelon matrix (or row echelon
matrix). A matrix that is in reduced echelon form is called a reduced echelon
matrix (or row reduced echelon matrix).

In particular, 
1 2 3 4
0 0 1 2
0 0 0 1
0 0 0 0


Row Echelon Matrix


1 2 0 0
0 0 1 0
0 0 0 1
0 0 0 0


Row Reduced Echelon Matrix

Note: The word “echelon” is French for “ladder”. An echelon matrix (or reduced echelon
matrix) should look like a ladder (or staircase) of 0’s. Here are some more examples in
pictorial form. In these examples, � represents a leading term (so it is any nonzero number),
and ∗ represents any real number (it can be zero or nonzero).


� ∗ ∗ ∗
0 � ∗ ∗
0 0 0 �
0 0 0 0


(Row) Echelon Matrix

1 0 ∗ 0
0 1 ∗ 0
0 0 0 1
0 0 0 0


(Row) Reduced Echelon Matrix

� ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 � ∗ ∗ ∗
0 0 0 0 0 0 � ∗
0 0 0 0 0 0 0 �


(Row) Echelon Matrix

1 ∗ ∗ ∗ 0 ∗ 0 0
0 0 0 0 1 ∗ 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(Row) Reduced Echelon Matrix
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Theorem

Each matrix is row equivalent to one and only one reduced echelon matrix.

Definition

If a matrix A is row equivalent to an echelon matrix U , then we call U an echelon
form of A (or row echelon form of A). In this case, we write U = REF(A).
If a matrix A is row equivalent to a reduced echelon matrix U , then we call U a
reduced echelon form of A (or row reduced echelon form of A). In this case,
we write U = RREF(A).

It is important to note that REF(A) is not unique, but RREF(A) is unique. Moreover, we
will find that if A is an augmented matrix representing a system of equations, then RREF(A)
will give us the solution set of the system.

We should now set a goal: Given a matrix A, how can we produce REF(A) (of which
there are (typically) infinitely many possibilities) and RREF(A) (of which there
is only one possibility).

2.2 Pivots

In the last many examples, it can be noted that the leading entries are always in the same
position – we can then give this position a name.

Definition

A pivot position in a matrix A is a location in A that corresponds to a leading 1 in
RREF(A).
A pivot column is a column of A that contains a pivot position.
The numbers in the pivot positions of REF(A) are called pivots.

Example 5. Let A =

1 3 5 7
3 5 7 9
5 7 9 11

. Where are the pivots of the matrix A, provided that

RREF(A) is described below?

RREF(A) =

1 0 −1 0
0 1 2 0
0 0 0 1


We will use pivots extensively in producing

A −→ REF(A) −→ RREF(A)

There are several ways to produce these forms, but we will be using one.
Damien Adams Page 15 of 107
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2.3 Gauss-Jordan Elimination

This process has six steps divided into two parts. The process of using the first four steps
is called Gaussian Elimination and produces A −→ REF(A). Including the last two steps is
called Gauss-Jordan Elimination and produces A −→ RREF(A).

Gauss-Jordan Elimination

This algorithm is used to produce RREF(A) given a matrix A.

1. Leftmost nonzero column is a pivot column with pivot position at the top.

2. Choose a nonzero entry in the pivot column to be a pivot. Interchange rows so
that the pivot is in the top row.

3. Use row operations to create all zeros below the pivot.

4. Ignore the pivot row and repeat for the remaining rows ad terminum.

5. Make all pivots 1.

6. Beginning with the rightmost pivot working upward and left, use row operations
to zero all entries above each pivot.

Example 6. Use Gauss-Jordan Elimination to find RREF(A) for the matrix A below.

A =

1 2 3 4
1 3 5 7
1 4 7 10


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2.4 Gauss-Jordan Elimination & Linear Systems

Now let’s explore using Gauss-Jordan Elimination to solve a system of equations. When we
solve, there are several ways to describe a solution set.

Definition

Variables corresponding with pivot columns are called basic variables.
Variables not represented by a pivot column are free variables.

We will be using these definitions in forming solution sets.

• If there is no solution, we write ∅.

• If there is a unique solution, we list that one solution in a set.

• If there are infinitely many solutions, we form a general solution by expressing the
basic variables in terms of the free variables and denoting the free variables as “free”.
This solution set is also called a parametric solution where the parameters are the
free variables.

Example 7. Consider the linear system below.

x1+ 2x2+ 3x3 = 4

x1+ 3x2+ 5x3 = 7

x1+ 4x2+ 7x3 = 10

a. Convert the system into an augmented matrix.

b. Use Gauss-Jordan Elimination to find RREF(A).

c. Identify the basic and free variables of the system.

d. Find a general solution to the linear system.

e. Find three particular solutions to the linear system.
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Continued...

Given a linear system, we will want to learn to “read” a matrix and interpret what it tells
us about the linear system that produced it. For example, if A is an augmented matrix for
a linear system, then

• If RREF(A) produces a false statement, such as “0 = 1”, then the system is inconsis-
tent.

• If RREF(A) produces an trivial statement, such as “0 = 0”, then this tells us nothing
about the system.

Theorem

A linear system is consistent if and only if the rightmost column of the augmented
matrix is not a pivot column. This corresponds to having no row of the form[
0 · · · 0 �

]
, where � 6= 0. If a linear system is consistent, then the solution set

contains either a unique solution (no free variables) or infinitely many solutions (free
variable(s)).

To conclude this section, we want to use Gauss-Jordan Elimination to solve linear systems
in this way:

1. Create the augmented matrix A for the linear system.

2. Find RREF(A).

3. Deduce the unique or parametric solution by turning RREF(A) back into a system.
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3 Vector Equations

3.1 Vectors

We begin with a working definition. This is not a definition that will stick, but we will use
it for the first half of this course.

Definition

A vector is an ordered list of numbers.

There are two kinds of vectors: column vectors

[
a
b

]
and row vectors

[
a b

]
. We will make a

conventional decision to use column vectors by default.

Definition

In a vector


a1
a2
...
an

, the numbers a1, a2, . . . , an are called the entries of the vector.

Now that we have this new mathematical object, let’s explore how vectors work.

Recall R is the set of all real numbers.

3.1.1 R2

Definition

R2 is the set of vectors with 2 entries. That is, R2 =

{[
a
b

]
| a, b ∈ R

}
.

Definition

Two vectors in R2 are equal iff their corresponding entries are equal.

For example,

[
1
2

]
=

[
a
b

]
implies a = 1, b = 2. Also,

[
1
2

]
6=
[
2
1

]
.
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Definition

Given u,v ∈ R2, the sum of u and v is the vector u + v obtained by adding the
corresponding entries of u and v.

Example 1. Add

[
1
2

]
+

[
3
−5

]
.

Example 2. Can we add

[
1
2

]
+

1
2
3

?

Definition

Given a vector u and a constant c ∈ R, the scalar multiple of u by c is the vector
cu obtained by multiplying each entry of u by c. The number c is called a scalar.
Note that it is not bold.

Example 3. If u =

[
1
2

]
, find 6u.

Because points in the Cartesian plane are made up of 2 ordered entries, we can identify a
geometric point with a column vector.

(a, b) =

[
a
b

]
So R2 is the set of all points in the plane. But how do we represent them as images?
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Convention: We again adopt a convention that we will use vectors as arrows to draw
vectors. Moreover, all of our vectors will begin with the tail at the origin and the tip at
(a, b).

Parallelogram Rule for Addition

If u,v ∈ R2, then u + v is the fourth vertex of the parallelogram with vertices at the
origin, u, and v.

Example 4. Let u =

[
1
3

]
and v =

[
−2
1

]
. Graph u,v,u+v. On a second set of axes, graph

v, 2v,−1
3
v.

We have now defined equality, sum, and scalar multiplication for vectors in R2. To the
difference of u and v is simply u − v = u + (−1)v. Moreover, notice that we have no
definition for multiplication of two vectors (yet), nor do we have a definition for division.
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3.1.2 Rn

Definition

We define Rn to be the collection of ordered n-tuples of real numbers, usually written

u =


u1
u2
...
un

. Moreover, the zero vector is the vector whose entries are all 0, written 0.

It turns out, equality, sum, difference, and scalar multiplication are defined just as in R2.

Properties of Rn

(i) u + v = v + u

(ii) (u + v) + w = u + (v + w)

(iii) u + 0 = 0 + u = u

(iv) u− u = u + (−1u) = −u + u = 0

(v) c(u + v) = cu + cv

(vi) (c+ d)u = cu + du

(vii) c(du) = (cd)u

(viii) 1u = u

The proofs are not too difficult, and I encourage them as a exercises.

3.2 Linear Combinations and Span

One of the more important terms of this course is the notion of a linear combination. This
is really a combination of sum and scalar multiplication of vectors. The term comes from
the fact that we are combining vectors in a linear way (remember the definition of a linear
equation?).

Definition

The linear combination of vectors v1,v2, . . . ,vp ∈ Rn with weights c1, c2, . . . , cp ∈
R is the vector c1v1 + c2v2 + · · ·+ cpvp.
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Example 5. Let v1,v2 ∈ Rn. Identify which of the following are linear combinations of u
and v. In these cases, identify the weights in the linear combination.

• v1 + v2

• v1 − v2

• 2v1 + 3v2

• 0

• 0

• v1

• −v1 − πv2

•
√

2v1 + v2

•
√

2v1 + v2

There are a few examples that I consider to be blueprint prompts, and this next one is one
of them. We will encounter prompts that are essentially this one throughout this course.

Example 6. If a1 =

 1
−2
−5

, a2 =

2
5
6

, and b =

 7
4
−3

, determine if b can be written as

a linear combination of a1 and a2. (That is, does the equation x1a1 + x2a2 = b have a
solution?)

This workthrough provides a new way to express a matrix – a row of column vectors. More-
over, we notice a vector equation x1a1 + x2a2 + · · · + xnan = b has the same solution set
as the linear system whose augmented matrix is A =

[
a1 a2 · · · an b

]
. In particular, b

can be generated by a linear combination of a1, a2, . . . , an iff there exists a solution to the
linear system corresponding to A.
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3.3 Span

Now that we have linear combinations, it is important to know what vectors may or may
not be a linear combination of a particular set of vectors. This leads us to one of the biggest
definitions of this entire course – the span of a set of vectors.

Definition

If v1,v2, . . . ,vp ∈ Rn, then we define the span of v1,v2, . . . ,vp to be the set of all
linear combinations of v1,v2, . . . ,vp, denoted span{v1,v2, . . . ,vp}.

Note span{v1,v2, . . . ,vp} = {c1v1 + c2v + 2 + · · ·+ cpvp | c1, c2, . . . , cp ∈ R}. It is also im-
portant to note that span{v1,v2, . . . ,vp} is a subset of Rn.

To connect this back to the previous section, we have the following proposition.

Proposition

If b ∈ span{v1,v2, . . . ,vp}, then x1v1 + x2v2 + · · ·xpvp = b has a solution.

Example 7. Is 0 ∈ span{v1,v2, . . . ,vp}?

3.3.1 Envisioning Span

We finish this section with a few questions to ponder, and the answers are not obvious.

Consider u,v ∈ R3.

• What does span{u} look like?

• What does span{u,v} look like?
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4 Matrix Equations

4.1 Matrix Product

We now have linear combinations, so we will revisit previous topics to connect it all.

Definition

If A is an m×n matrix with columns a1, a2, . . . , an and x ∈ Rn, then the product Ax
is the linear combination of the columns of A with weights being the corresponding
entries of x. That is,

Ax =
[
a1 a2 · · · an

]

x1
x2
...
xn

 = x1a1 + x2a2 + · · ·+ xnan

Example 1. Multiply

[
1 −1 2 4
6 −2 3 1

]
−1
1
2
3



Example 2. If v1,v2,v3,v4 ∈ Rm, write the linear combination −v1 + v2 − 3v3 + 6v4 as
the product of a matrix and a vector.
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4.2 Matrix Equation

In the first section, we saw a system of equations

x1 + 2x2 − x3 = 4
− 5x2 + 3x3 = 1

Last section, we saw this was equivalent to the vector equation

x1

[
1
0

]
+ x2

[
2
−5

]
+ x3

[
−1
3

]
=

[
4
1

]
Transforming the left side, this is now equivalent to the matrix equation

[
1 2 −1
0 −5 3

]x1x2
x3

 =

[
4
1

]

This last equation can be abbreviated in the form Ax = b.

Definition

An equation of the form Ax = b, where A is an m× n matrix and x ∈ Rn,b ∈ Rm, is
a matrix equation.

That is,
Linear System←→ x1v1 + x2v2 + · · ·xnvn = b←→ Ax = b

Notice A is a coefficient matrix for the linear system and any linear system can be written
as a linear combination or matrix equation!

Theorem

If A is an m× n matrix with columns a1, a2, . . . , an and b ∈ Rm, then

Ax = b

has the same solution set as

x1a1 + x2a2 + · · ·+ xnan = b

which has the same solution set as the system whose augmented matrix is[
a1 a2 · · · an b

]
Linear systems can now be viewed in three ways, all of which reduce to finding RREF(A)!
This means that we solve matrix equations in the same way as vector equations, and those
Damien Adams Page 26 of 107



MTH 261 Guided Notes

are the same as solving linear systems. Moreover, all of this connects to the concept of span
and linear combinations.

Proposition

The matrix equation Ax = b has a solution iff b is a linear combination of the columns
of A.

This helps us determine when b ∈ span{a1, a2, . . . , an} ≡ Ax = b is consistent.

Question: Is Ax = b always consistent?

Example 3. Let A =

 1 3 4
−4 2 −6
−3 −2 −7

 ,b =

b1b2
b3

. Is Ax = b consistent ∀b1, b2, b3 ∈ R?

Hint: RREF

 1 3 4 b1
−4 2 −6 b2
−3 −2 −7 b3

 =

1 3 4 b1
0 14 10 b2 + 4b1
0 0 0 b1 − 1

2
b2 + b3



Theorem

Let A be an m× n matrix. The following are equivalent.

(i) Ax = b is consistent ∀b ∈ Rm.

(ii) A has a pivot in every row.

(iii) Each b ∈ Rm is a linear combination of the columns of A.

(iv) The columns of A span Rm.

Note this theorem is about A, not the augmented matrix
[
A b

]
.

Proof: (i) ⇒ (ii). Suppose (for a contradiction) that RREFA has a row of 0s. Augment
on a column with a nonzero entry in the last entry. “Unwinding” the row operations back
to A. Then the augmented column will not allow a consistent system. This contradicts the
assumption that RREFA has a row of 0s.

(ii) ⇒ (iii). A leading 1 in each row allows for a solution for any b ∈ Rm. That is,[
a1 a2 · · · an b

]
has solution x ∈ Rn. By the definition of a matrix equation, Ax = b

leads to x1a1 + x2a2 + · · ·+ xnan = b. Hence, any b is a linear combination of the columns
of A.
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(iii) ⇒ (iv). Trivial from the definition of span.

(iv) ⇒ (i). Consider
[
a1 a2 · · · an

]
x = b for any b ∈ Rm. Since the columns of A span

Rm, there esit x ∈ Rn such that x1a1 + x2a2 + · · ·+ xnan = b. Hence, Ax = b is consistent.

4.3 The Identity Matrix

Example 4. Multiply

1 0 0
0 1 0
0 0 1

ab
c



Definition

A square matrix with 1’s on the main diagonal and 0’s elsewhere is called an identity
matrix, denoted I. Typically, In is the n× n identity matrix.

This matrix is an incredibly important matrix that will continue to appear throughout this
course.

Proposition

For allx ∈ Rn, Inx = x.

Theorem

If A is an m× n matrix, u,v ∈ Rn, c ∈ R, then

• A(u + v) = Au + Av, and

• A(cu) = c(Au).
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5 Solution Sets

5.1 Homogeneous Equations

Now that we have vectors, let’s revisit linear systems.

Definition

A linear system is homogeneous if it can be written as Ax = 0, where A is m × n,
and 0 ∈ Rm is the zero vector.

Last time, we found that Ax = b is not always consistent. On the other hand, Ax = 0
always has the solution x = 0 ∈ Rn.

Definition

The solution x = 0 to Ax = 0 is called the trivial solution.

With Ax = b, we always ask ourselves if this equation is consistent or inconsistent. If it is
consistent, we ask if the solution is unique or not.

With Ax = 0, we have no need to ask about consistency. Since Ax = 0 always has the
trivial solution, we ask if it has a nontrivial solution as well. It turns out, we can determine
this by looking at the variables.

Recall Existence and Uniqueness: If a linear system is consistent, then the solution set
contains either

(i) A unique solution when there are no free variables, or

(ii) Infinitely many solutions when there is at least one free variable.

Proposition

The homogeneous equation Ax = 0 has a nontrivial solution iff the equation has a
free variable.
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Example 1. Determine if the homogeneous system has a nontrivial solution. Describe the
solution set.

3x1 +5x2 −4x3 = 0
−3x1 −2x2 +4x3 = 0
6x1 +x2 −8x3 = 0

.

Hint: RREF(A) =

1 0 −4
3

0
0 1 0 0
0 0 0 0



5.2 Geometry and Algebra of Solutions to Ax = 0

Notice the solution to Ax = 0 could be expressed as span{v}.

Generally, the solution to the homogeneous equation Ax = 0 is span{v1,v2, . . . ,vp} for some
v1,v2, . . . ,vp. Geometrically, this means...

• If there are no free variables, then the trivial solution is the only solution, and span{0} =
{0} is the solution set (just a point).

• If there is one free variable, then the solution set is span{v1} and will be a line through
the origin.

• If there are two free variables, then the solution set is span{v1,v2} and will be a plane
through the origin.

• Etc.

This is the geometry. What about the algebra?
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Definition

A parametric vector equation is an equation of the form x = c1v1+c2v2+· · ·+cpvp,
where ci ∈ R. When a parametric vector equation represents a solution set, it is in
parametric vector form.

Example 2. Describe all solutions to Ax = b where

A =

 1 3 −5
1 4 −8
−3 −7 9

 ,b =

 4
7
−6



Hint: RREF(
[
A b

]
) =

1 0 4 −5
0 1 −3 3
0 0 0 0



So x = p + tv, where p =

−5
3
0

 ,v =

−4
3
1

 , t = x3 ∈ R.

In the example,

−5
3
0

 is a particular solution, and

−5
3
0

+ t

−4
3
1

 is the general solu-

tion, where each choice of the variable t produces a different particular solution.
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5.3 Geometry of Solutions to Ax = b

In R2, we graph y = mx + b by graphing y = mx and then translating that vertically by b.
That is, the graph of y = mx+ b is the graph of y = mx shifted a bit.

Because geometrically, vector addition is a translation, the solutions of Ax = b are the
solutions of Ax = 0 shifted a bit.

For example, adding p + v moves v in a direction parallel to the line through p and 0. We
say v is translated by p to v + p.

If L is the line through 0 and v, adding p to each point on L translates every point to the
new line L+ p.

In the previous example, x = t

−4
3
1

 is the general solution to Ax = 0. Geometrically, this

represents the line through 0 and

−4
3
1

.

On the other hand, x =

−5
3
0

+ t

−4
3
1

 is that line translated by

−5
3
0

.
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This relationship is outlined in this theorem.

Theorem

Suppose Ax = b is consistent for some b, and let p be the solution. If vh is any
solution to the homogeneous equation Ax = 0, then the solution to Ax = b is all
vectors of the form w = p + tvh, where t ∈ R.

Algorithm for Solving a Matrix Equation

To solve Ax = b, we follow these steps.

1. Compute RREF(
[
A b

]
).

2. Express basic variables in terms of the free variables.

3. Write x in parametric vector form.

4. Decompose x into a linear combination of vectors with weights as the free vari-
ables.
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6 Linear Independence

6.1 Definition

Any homogeneous equation Ax = 0 can be turned into a vector equation. For example.

1 0 3
2 1 5
1 0 3

x1x2
x3

 =

0
0
0

 −→ x1

1
2
1

+ x2

0
1
0

+ x3

3
5
3

 =

0
0
0


Notice that the trivial solution always works, but is it unique?

Definition

An indexed set of vectors {v1,v2, . . . ,vp}, vi ∈ Rn, is linearly independent if the
vector equation

x1v1 + x2v2 + · · ·+ xpvp = 0

has only the trivial solution. If the trivial solution is not unique, we call the set
linearly dependent.
If a set of indexed vectors {v1,v2, . . . ,vp}, vi ∈ Rn, is linearly dependent, then there
exists some weights c1, c2, . . . , cp ∈ R not all zero that satisfy the equation. The
equation

c1v1 + c2v2 + · · ·+ cpvp = 0

is called a linear dependence relation.

Example 1. Are the vectors v1 =

1
2
1

 ,v2 =

0
1
0

 ,v3 =

3
5
3

 linearly independent? If not,

find the linear dependence relation.

Hint: RREF

1 0 3 0
2 1 5 0
1 0 3 0

 =

1 0 3 0
0 1 −1 0
0 0 0 0


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6.2 Linear Dependence Without a Linear Dependence Relation

As we explore linear dependence and linear independence, we can always solve the homo-
geneous equation and interpret our results. However, one of the recurring themes of this
course is to identify conclusions without doing all of the computational work. So let’s start
exploring what linear dependence means without finding a linear dependence relation.

Example 2. Is


1

2
3

 ,
2

4
6

 linearly independent or linearly dependent?

Linear Dependence Test for a Two-Vector Set

Consider {v1,v2}. If v2 = cv1 for some c ∈ R, c 6= 0, then v1,v2 are linearly dependent.

Example 3. Is

{[
1
2

]
,

[
−3
2

]
,

[
1
6

]}
linearly independent?

Linear Dependence Test for a Set of Several Vectors

A set of vectors with more vectors than there are entries in those vectors is linearly
dependent.

Example 4. When is the set of a single vector independent?
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Proposition

The set {0} is linearly dependent.

Corollary

Any set containing 0 is linearly dependent.

Characterization of Linearly Dependent Sets

An indexed set S = {v1,v2, . . . ,vp}, p > 1, is linearly dependent iff at least one vector
in S is a linear combination of the others. Moreover, if S is linearly dependent and
v1 6= 0, then some vi, i > 1, is a linear combination of v1,v2, . . . ,vi−1.

Proof: First, assume some vi ∈ S is a linear combination of the other vectors, then

c1v1 + c2v2 + · · ·+ ci−1vi−1 + ci+1vi+1 + · · ·+ cpvp = civi

where c1, c2, . . . , cp are not all zero.

Then c1v1 +c2v2 + · · ·+ci−1vi−1−civi+ci+1vi+1 + · · ·+cpvp = 0, so S is linearly dependent.

On the other hand, assume S is linearly dependent. If v1 = 0, then it is a trivial linear
combination of the other vectors. Suppose v1 6= 0. Then there exist c1, c2, . . . , cp ∈ R not
all zero such that

c1v1 + c2v2 + · · ·+ cpvp = 0

Let i be the largest subscript such that civi 6= 0. Since i > 1,

c1v1 + · · ·+ civi + 0vi+1 + · · ·+ 0vp = 0

civi = −c1v1 − · · · − ci−1vi−1
vi = −c1

ci
v1 − · · · −

ci−1
ci

vi−1

Example 5. Let u =

2
0
5

 ,v =

 3
0
−1

. Describe span{u,v}.
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7 Linear Transformations

7.1 Transformations

Previously, we have taken a linear combination of vectors and turned it into a matrix product.
However, a matrix product does not necessarily have to come from a linear combination of
vectors. A matrix product, such as Ax, produces a vector, so a matrix can “act” on a vector
by multiplication.

Consider A =

[
1 2 3 4 5
−2 −1 1 4 8

]
, x =


−1
0
1
2
3

, and y =


7
−6
0
0
1

. Notice

Ax =

[
1 2 3 4 5
−2 −1 1 4 8

]
−1
0
1
2
3

 =

[
10
35

]
= b

and

Ay =

[
1 2 3 4 5
−2 −1 1 4 8

]
7
−6
0
0
1

 =

[
0
0

]

Multiplying a vector by a matrix fundamentally changes the vector. It may change both the
entries of the vector as well as the size of the vector. So we say A transforms x into b, and
A transforms y into 0.

Solving Ax = b amounts to finding all x ∈ R5 such that Ax = b ∈ R2. But with this new
language, we can instead ask, “Find all vectors in R5 that are transformed into b ∈ R2 by
the action of multiplying by A.”

Damien Adams Page 37 of 107



MTH 261 Guided Notes

Definition

A transformation (or mapping or function) T : Rn → Rm is a rule that assigns
to each vector x ∈ Rn a vector T (x) ∈ Rm. The set Rn is the domain of T , and Rm

is the codomain of T . For each x ∈ Rn, the vector T (x) ∈ Rm is the image of x
(under the action of T ). The set of all images of T is the range of T .

In this section, T (x) = Ax, where A is an m×n matrix. Written another way, x 7→ Ax. The
domain of T is Rn (where n is the number of columns of A), and the codomain is Rm (where
m is the number of entries in each column). The range is the set of all linear combinations
of the columns of A, since each image T (x) = Ax (linear combination of the columns of A).

Example 1. Let A =

 1 3
9 −1
−2 5

, u =

[
1
2

]
, v =

 3
−29
16

. Define T : R2 → R3 by T (x) = Ax.

(a) Find the image of u under T .

(b) Find x ∈ R2 whose image under T is v. Is it unique?

Note that

 1 3 3
9 −1 −29
−2 5 16

 ∼
1 0 −3

0 1 2
0 0 0

.
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7.2 Describing a Transformation Given Algebraically

We are learning that a matrix can transform something, so how do we describe what that
transformation is? In reality, we typically make an observation and try to describe that with
words; we then try to take those words and describe that with formulas and algebra. Let’s
try to see if we can come up with some words based on these formulas.

Example 2. Let A =

1 0 0
0 0 0
0 0 1

. What does the transformation x 7→ Ax do to points in

R3?

Example 3. Let A =

[
1 2
0 1

]
and T : R2 → R2 be defined by T (x) = Ax. Consider an

Instagram image in the x1x2-plane with vertices

[
0
0

]
,

[
2
0

]
,

[
0
2

]
,

[
2
2

]
. What does T do to this

image?

This is type of transformation is called a shear transform.

7.3 Linear Transformations

Just like functions, special transformations have particular names. Previously, A(u + v) =
Au + Av and A(cu) = c(Au) for all u,v ∈ Rn and c ∈ R. Similarly,
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Figure 1: From Lay, Lay, McDonald’s Linear Algebra and its Applications, 5th Edition

Definition

A transformation T is a linear transformation if

(i) For all u,v in the domain of T , T (u + v) = T (u) + T (v), and

(ii) For all c ∈ R and ∀u in the domain of T , T (cu) = cT (u).

Proposition

Every matrix transformation is a linear transformation.

It turns out, with these properties, we can conclude the following.

Proposition

Let T : Rn → Rm be a linear transformation. Then for all u,v ∈ Rn and c, d ∈ R,

(i) T (0) = 0, and

(ii) T (cu + dv) = cT (u) + dT (v)

Proof: Since T is linear, we can use the scalar properties of linear transformations to do the
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following
T (0) = T (0u) = 0T (u) = 0

Moreover, we can use both properties of linear transformations to show that

T (cu + dv) = T (cu) + T (dv) = cT (u) + dT (v)

More efficiently, to show that a transformation T : Rn → Rm is linear, we only need to show
that it satisfies T (cu+dv) = cT (u)+dT (v) for all scalars c, d and vectors u,v in the domain
of T . That said, showing that T (0) = 0 is not sufficient to conclude linearity.

Repeating this, we can generalize that linear transformations have the property that

T (c1v1 + c2v2 + · · ·+ cpvp) = c1T (v1) + c2T (v2) + · · ·+ cpT (vp)
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8 The Matrix of a Linear Transformation

8.1 The Columns of an Identity Matrix

Suppose that we have a transformation T : Rn → Rm. In the last section, we showed that if
the rule to evaluate T is T (x) = Ax, then T must be a linear transformation. In this section,
we aim to show that if T is a linear transformation, then there must be some matrix A such
that T (x) = Ax.

So the question is, “How do we find A?” It turns out, A is uniquely determined by what T
does to the columns of In.

Definition

Let I be the n × n identity matrix. We define the vector ej as the jth column of I.
That is, ej is the Rn vector whose jth entry is 1 while all other entries are 0.

Example 1. Suppose T : R2 → R4 is linear such that

T (e1) =


2
−4
5
7

 and T (e2) =


−1
3
0
−8

 .

Find a formula for T (x), where x ∈ R2.
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The only assumption we made was what T (e1) and T (e2) were. We determined A from only
that information. Since T (x) represents a linear combination of vectors, we can create a
matrix product.

T (x) =
[
T (e1) T (e2)

] [x1
x2

]
= Ax

Theorem

Let T : Rn → Rm be a linear transformation. Then there exists a unique matrix
A such that for all x ∈ Rn, T (x) = Ax. Moreover, A is the m × n matrix whose
jth column is the vector T (ej), where ej is the jth column of In. That is, A =[
T (e1) T (e2) · · · T (en)

]
.

Proof: Write x = Inx =
[
e1 e2 · · · en

]
x = x1e1 + x2e2 + · · ·+ xnen.

By linearity,
T (x) = T (x1e1 + x2e2 + · · ·+ xnen)

= x1T (e1) + x2T (e2) + · · ·+ xnT (en)

=
[
T (e1) T (e2) · · · T (en)

]

x1
x2
...
xn

 = Ax

So A exists.

Let T : Rn → Rm be a linear transformation such that T (x) = Bx for some m × n matrix
B. Let Ai be the ith column of A and Bi be the ith column of B.

Then Ai = T (ei) = Bei = Bi for 1 ≤ i ≤ n. It follows that each column of B is equivalent
to the corresponding column of A, so B = A. Therefore A is unique.

8.2 Standard Matrix for a Linear Transformation

The matrix that we have established in the previous theorem has a name.

Definition

Let T : Rn → Rm be a linear transformation, and let A be the matrix such that
T (x) = Ax. Then

A =
[
T (e1) T (e2) · · · T (en)

]
is known as the Standard Matrix for the Linear Transformation T .
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Example 2. Let T : R2 → R2 be the transformation that rotates each point in R2 about
the origin through an angle of θ (CCW is positive). Assuming the transformation is linear,
find the standard matrix A for this transformation.

Example 3. Let T : R2 → R2 be the linear transformation that

1. First rotates points by π
6

about the origin, then

2. Second reflects points about the line x2 = x1, and

3. Lastly dilates points by a factor of 8.

Find the standard matrix for the linear transformation T .
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8.3 Onto and One-to-One

There are several other adjectives that belong to transformations. We will focus on two more
– one-to-one and onto transformations.

Definition

A mapping T : Rn → Rm is onto (surjective) Rm if each b ∈ Rm is the image of at
least one x ∈ Rn.

Definition

A mapping T : Rn → Rm is one-to-one (injective) if each b ∈ Rm is the image of
at most one x ∈ Rn. That is, a mapping T is one-to-one if T (x1) = T (x2) implies
x1 = x2.

Notice how parallel each of these definitions is. Moreover, these definitions have everything
to do with the existence and uniqueness of preimages.

• Existence: “Does each b ∈ Rm have a pre-image?” If T is onto, then “Yes”.

• Uniqueness: “Is each solution to T (x) = b unique?” If T is one-to-one, then “Yes”.

Theorem

Let T : Rn → Rm be a linear transformation. Then T is one-to-one iff T (x) = 0 has
only the trivial solution.

Proof: Since T is linear, T (0) = 0. We will show that both statements are true or both are
false.

If T is one-to-one, then T (x) = 0 has only one solution. Since T (0) = 0, the only solution
is trivial.

If T is not one-to-one, then there is at least one b ∈ Rm with two different pre-images in
Rn, say u,v. So T (u) = b and T (v) = b. Since T is linear,

T (u− v) = T (u)− T (v) = b− b = 0

Since u 6= v, u− v 6= 0. Thus, T (x) = 0 has at least two solutions.

It follows that either both are true or both are false.

Theorem

Let T : Rn → Rm be a linear transformation with standard matrix A. Then

• T is onto iff the columns of A span Rm.

• T is one-to-one iff the columns of A are linearly independent.
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Proof:

• The columns of A span Rm ⇐⇒ ∀b ∈ Rm, Ax = b is consistent ⇐⇒ ∀b, T (x) = b
has at least one solution ⇐⇒ T is onto.

• T is one-to-one ⇐⇒ T (x) = 0 has only the trivial solution ⇐⇒ Ax = 0 has only
the trivial solution ⇐⇒ the columns of A are linearly independent.

Example 4. Let T : R2 → R3 by T (x1, x2) = (3x1 + x2, 5x1 + 7x2, x1 + 3x2). Is T a linear
transformation? Is it injective? Surjective?
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9 Matrix Operations

9.1 Matrix Arithmetic

An m× n matrix can be represented in several ways, some more detailed than others. Here
are four ways to represent a matrix, some old and some new.

A =
[
a1 a2 · · · an

]
=
[
aij
]

=


a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
...

. . .
...

am1 am2 am3 · · · amn



Notice that aij is the ith entry of aj. So aj =


a1j
a2j
...
amj

. We can use these to make some

definitions.

Definition

The diagonal entries in an m × n matrix A =
[
aij
]

are a11, a22, . . ., and they form
the main diagonal.

Definition

A diagonal matrix is a square n×n matrix whose nondiagonal entries are 0. (Think
In)

Definition

An m × n matrix whose entries are all zero is a zero matrix, written 0 (size from
context).

The same definitions for equality, sum, difference, and scalar multiples from vectors apply
here. There is a very meaningful reason for this that will be explored in the future.

Example 1. Let A =

[
1 2 3 4
5 6 7 8

]
, B =


1 2
3 4
5 6
7 8

, and C =

[
1 1 2 3
5 8 13 21

]
. Find A + B,

A+ C, and 2A− 3C.
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Continued...

Properties of Matrix Arithmetic

Let A,B,C be matrices of the same size, r, s be scalars.

(i) A+B = B + A

(ii) (A+B) + C = A+ (B + C)

(iii) A+ 0 = A

(iv) r(A+B) = rA+ rB

(v) (r + s)A = rA+ sA

(vi) r(sA) = (rs)A

Proofs follow from verifying corresponding column equality. We will leave these to be thought
about if necessary. Notice that we have omitted any notion of multiplying matrices with
each other.

9.2 Matrix Multiplication

When a matrix B acts on a vector x by multiplication, it transforms x 7→ Bx. If a matrix
A then acts on the resulting vector by multiplication, then we get Bx 7→ A(Bx).

A(Bx) is produced from x by a composition of mappings. Hopefully, we can find a single
matrix so that A(Bx) = (AB)x.

Figure 2: From Lay, Lay, McDonald’s Linear Algebra and its Applications, 5th Edition
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Suppose A is m × n while B is n × p with x ∈ Rp. Then by matrix-vector product,
Bx = x1b1 + x2b2 + · · ·+ xpbp. By the linearity of multiplication by A,

A(Bx) = A(x1b1) + A(x2b2) + · · ·+ A(xpbp) = x1Ab1 + x2Ab2 + · · ·+ xpAbp

So A(Bx) is a linear combination of the vectors Ab1, Ab2, . . . , Abp with x providing weights.
Thus,

A(Bx) =
[
Ab1 Ab2 · · · Abp

]
x

Matrix multiplication corresponds to a composition of linear transformations. Based on this
exploration, we provide the following defintion.

Definition

If A is an m×n matrix and B is an n× p matrix, then the product AB is the m× p
matrix whose columns are Ab1, Ab2, . . . , Abp. That is,

AB = A
[
b1 b2 · · · bp

]
=
[
Ab1 Ab2 · · · Abp

]

Example 2. Compute AB for A =

[
1 2 3 4
5 6 7 8

]
, B =


1 2
3 4
5 6
7 8

.
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Properties of Matrix Multiplication

Let A,B,C be matrices for which the indicated products are defined, r be a scalar.

(i) A(BC) = (AB)C

(ii) A(B+C) = AB+AC (left distribu-
tive law)

(iii) (B + C)A = BA + CA (right dis-

tributive law)

(iv) r(AB) = (rA)B = A(rB)

(v) If A is m× n, then ImA = A = AIn

Notice that this list of properties is similar to the previous list. The main omission is
commutativity. With matrices, the order of multiplication matters.

Consider in the previous examples the size of A was 2 × 4 and B was 4 × 2, so what sizes
are AB and BA?

Pitfalls: In general,

(i) AB 6= BA

(ii) Cancellation laws do not hold for matrix multiplication. (AC = BC ; B = C)

(iii) Zero Product Property does not hold (AB = 0 ; A = 0 or B = 0).

These statements can be true, but in general, we cannot assume commutativity of matrix
multiplication, cancellation laws, or the zero product property. This also means that we
must be considerate of the side that we multiply on. Particularly, are we multiplying by a
matrix A on the right of an expression, or are we multiplying on the left of an expression?

9.3 Powers and Transpose of a Matrix

Because of how sizes must work out, we notice that if we want to multiply a matrix by itself,
then the matrix must have the same number of rows and columns. That is, the matrix must
be square. So if A is n× n, then AA is defined and is n× n. So is AAA, etc. We can define
Ak = A · · ·A︸ ︷︷ ︸

k times

.

Definition

If A 6= 0, x ∈ Rn, and k ∈ N, then Akx is the vector produced by left-multiplying by
A k times. If k = 0, then A0x = x, so A0 = In.
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Example 3. Let A =

[
1 2
3 4

]
. Evaluate A2.

Notice that the entries of A2 are not seemingly directly related to the entries of A. It turns
out, the idea of finding a power of a matrix directly is difficult to do, but it is something we
will explore in the future.

Definition

Given an m×n matrix A, the transpose of A is the n×m matrix AT whose columns
are formed from the corresponding rows of A.

Example 4. If A =

[
1 2 3 4
5 6 7 8

]
, B =


1 2
3 4
5 6
7 8

, find AT , BT , (AB)T .

Transpose Properties

Let A,B be matrices for which the indicated products are defined, r be a scalar.

(i) (AT )T = A

(ii) (A+B)T = AT +BT

(iii) (rA)T = rAT

(iv) (AB)T = BTAT

Damien Adams Page 51 of 107



MTH 261 Guided Notes

10 The Inverse of a Matrix

10.1 Invertible and Singular Matrices

Throughout mathematics, we have continued to learn to do things, and then we learn how
to undo them.

Do Undo
Addition Subtraction
Multiplication Division
Powers Roots (sort of)
Exponential Logarithm
Differentiation Integration
Matrix Transformation ?

Recall that a multiplicative inverse of a nonzero number c ∈ R is found by c · c−1 = 1 and
c−1 · c = 1. We use this as the baseline for our definition of an invertible matrix.

Definition

An n×n matrix A is invertible if there is another n×n matrix C such that CA = I
and AC = I. We call C the inverse of A and denote it A−1.

Proposition

The inverse of an invertible matrix A is unique.

Proof: Suppose an invertible matrix A has two inverses, B and C. Then

B = BI

= B(AC)

= (BA)C

= IC

= C

Therefore, B = C, and the inverse of A is unique.

It turns out, depending on who you ask, someone may be more concerned with a matrix being
invertible, and another person may be more concerned with a matrix that is not invertible.
For this reason, we have a name for a matrix that is decidedly not invertible.

Definition

An n× n matrix that is not invertible is called singular.
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Theorem

Let A =

[
a b
c d

]
. If ad− bc 6= 0, then A is invertible and A−1 =

1

ad− bc

[
d −b
−c a

]
. If

ad− bc = 0, then A is singular.

Definition

Let A =

[
a b
c d

]
. The quantity ad− bc occurs often and is called the determinant of

the 2× 2 matrix A. We write detA = |A| = ad− bc.

Example 1. Find detA and A−1 where A =

[
2 2
3 5

]

Note that the words “invertible” and “singular” apply only to square matrices. In this way,
a square matrix may be called invertible, noninvertible, singular, or nonsingular, where

“Nonsingular” means “Invertible”, and
“Noninvertible” means “Singular”.

On the other hand, none of these adjectives apply to matrices that are nonsquare.

10.2 Some Theory Involving Invertible Matrices

Previously, we posed the question, “Is Ax = b always consistent?” We found the answer is
no; however, with a bit of tinkering, we can actually get a result of yes.

Theorem

If A is a nonsingular n × n matrix, then for each b ∈ Rn, Ax = b has the unique
solution x = A−1b.

Proof: If b ∈ Rn, then Ax = b has a solution in x = A−1b because

Ax = A(A−1b) = (AA−1)b = Inb = b

If u is any other solution, then

Au = b⇒ A−1Au = A−1b⇒ Inu = A−1b⇒ u = A−1b

Thus, the solution is unique.
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Though A−1b is a solution to Ax = b (if A is invertible), few use this formula to solve, for
RREF(

[
A b

]
) is almost always faster than finding A−1 (exception being 2× 2.

The power of inverses is much deeper, which we must discover.

Theorem

If A,B are invertible matrices, then

(i) A−1 is invertible, and (A−1)−1 = A.

(ii) AB is invertible, and (AB)−1 = B−1A−1.

(iii) AT is invertible, and (AT )−1 = (A−1)T .

Generalizing the second item,

Theorem

The product of n × n invertible matrices is invertible, and the inverse is the product
of the inverses in reverse order.

This is going to be an incredibly powerful theorem in order to actually find the inverse of a
matrix that is not 2× 2. First, we will need to introduce a particular sort of matrix.

10.3 Elementary Matrices

Elementary matrices are matrices that describe our row-reduction steps. Particularly, scal-
ing, interchange, and replacement can all be described by matrices.

Definition

An elementary matrix is a matrix obtained by performing a single elementary row
operation on an identity matrix. Describe what each of these elementary matrices
does.

Example 2. Let E1 =

1 0 0
0 1 0
0 −2 1

, E2 =

0 0 1
0 1 0
1 0 0

, E3 =

3 0 0
0 1 0
0 0 1

, andA =

a b c
d e f
g h i

.

Compute E1A, E2A, and E3A.
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Proposition

If an elementary row operation is performed on an m × n matrix A, the resulting
matrix can be written as EA, where the m×m matrix E is created by performing the
same row operation on Im.

Recall that row operations are reversible. This was an important property of the row oper-
ations. Because elementary matrices represent the EROs, this means that E is invertible.

Proposition

Each elementary matrix E is invertible and is the elementary matrix of the same type
that transforms E back into I.

Example 3. Find the inverse of E1 =

1 0 0
0 1 0
0 −2 1

.

10.4 Finding the Inverse of an Invertible Matrix

Elementary matrices are the cornerstone of finding whether A is invertible as well as how to
find the inverse. Moreover, these can happen at the same time!

Theorem

An n × n matrix A is invertible iff A is row equivalent to In, and in this case, any
sequence of elementary row operations that reduces A to In also transforms In into
A−1.

Thus, A is invertible iff RREF(A) = I.

Proof: A is invertible ⇒ Ax = b is consistent ∀b ⇒ A has a pivot in every row. Since A
is square, A has a pivot in every column, and the pivots must be on the diagonal. Thus,
RREF(A) = In.

On the other hand, RREF(A) = In ⇒ ∃ elementary matrices such that

A E1A E2(E1A) · · · Ep(Ep−1 · · ·E2E1A) = In
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So Ep · · ·E1A = In. Since The product of Ep · · ·E1 is invertible,

(Ep · · ·E1)A = In ⇒ (Ep · · ·E1)
−1(Ep · · ·E1)A = (Ep · · ·E1)

−1In ⇒ A = (Ep · · ·E1)
−1

Thus, A is equal to an invertible matrix, so A is invertible. Moreover,

A−1 = ((Ep · · ·E1)
−1)−1 = Ep · · ·E1

So the sequence that reduces A to In also transforms In into A−1.

Algorithm for Finding the Inverse of a Matrix

For any square matrix A,

1. Form
[
A I

]
2. Row reduce this matrix. If we get

[
I A−1

]
, then A is invertible, and A−1 is the

second half of that matrix.

3. Write down A−1.

Example 4. Find the inverse of A =

1 1 1
2 1 2
1 −2 3

.
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11 The Invertible Matrix Theorem

11.1 The (Small) Invertible Matrix Theorem

There are a lot of consistencies throughout what we’ve learned. Each new piece of information
has led back to some other piece of information, and we proceeded by relating back to each
previous topic. This theorem seeks to unite all of those together.

The Invertible Matrix Theorem (Version 1)

Let A be an n× n matrix. The following are equivalent:

(a) A is invertible.

(b) A is row equivalent to In.

(c) A has n pivot positions.

(d) Ax = 0 has only the trivial solution.

(e) The columns of A are linearly independent.

(f) The linear transformation x 7→ Ax is one-to-one.

(g) Ax = b is consistent for all b ∈ Rn.

(h) The columns of A span Rn.

(i) The linear transformation x 7→ Ax maps Rn onto Rn.

(j) There is an n× n matrix C such that CA = I.

(k) There is an n× n matrix D such that AD = I.

(l) AT is invertible.

This theorem is a big theorem that ties together nearly each of the big ideas so far. The
IMT operates in a way that all items are simultaneously true, or they are all simultaneously
false. Keep in mind, though, that this theorem only applies to square matrices. If a matrix
is not square, then the IMT simply doesn’t say anything about the matrix.

Now, because this theorem is so big, it will be a mainstay, and we will add to it throughout
the remainder of the term. In fact, we will begin by altering it right now.

Recall that if A is invertible, then for all b ∈ Rn, Ax = b has a unique solution (x = A−1b).
Thus, (g) can actually be replaced with “Ax = b has a unique solution for each b ∈ Rn”.
We will update the IMT at the end of this section.

This theorem is incredibly useful for mining information and making conclusions with min-
imal effort. The next exercise demonstrates the power of the IMT.
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Example 1. Let A =


2 0 0 0
1 3 0 0
8 −2 1 0
9 12 −3 −3

. Let S =




2
1
8
9

 ,


0
3
−2
12

 ,


0
0
1
−3

 ,


0
0
0
−3


. Answer

the following questions.

a. Is S linearly independent or linearly dependent?

b. What does spanS look like?

c. Is Ax =


1
2
3
4

 consistent or inconsistent? If it is consistent, how many solutions does it

have?

d. Is A invertible or singular?

e. Let T : R4 → R4 by T (x) = Ax. Is T linear? Is T one-to-one? Is T onto R4?

11.2 Invertible Transformations

Everything so far with inverses has been about matrices. Previously, we’ve learned about
invertible functions. Since transformations are functions, we would hope that there is a link
between invertible matrices and invertible transformations. It turns out, the relationship is
exactly what we would hope that it is.

Definition

A linear transformation T : Rn → Rn is invertible if there exists a function S : Rn →
Rn such that

S(T (x)) = x for allx ∈ Rn

T (S(x)) = x for allx ∈ Rn
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Theorem

Let T : Rn → Rn be linear with standard matrix A. Then T is invertible iff A is an
invertible matrix. In this case, the linear transformation S given by S(x) = A−1x is
the unique function satisfying the invertible definition for T and is called the inverse
of T .

Proof: Suppose T is invertible. Then T (S(x)) = x for all x ∈ Rn, so if b is any Rn vector
and x = S(b), then T (x) = T (S(b)) = b, and T is onto Rn. Thus, b is in the range of T .
By the IMT, A is invertible (i).

Suppose A is invertible. Let S(x) = A−1x. Then S is a linear transformation since it
is a matrix transformation. Clearly, S satisfies the invertible definition of T . Thus, T is
invertible.

Example 2. Consider an injective linear transformation T : Rn → Rn. Determine if T is
onto Rn.

The Invertible Matrix Theorem (Version 2)

Let A be an n× n matrix. The following are equivalent:

(a) A is invertible.

(b) A is row equivalent to In.

(c) A has n pivot positions.

(d) Ax = 0 has only the trivial solution.

(e) The columns of A are linearly independent.

(f) The linear transformation x 7→ Ax is one-to-one.

(g) Ax = b has a unique solution for each b ∈ Rn.

(h) The columns of A span Rn.

(i) The linear transformation x 7→ Ax maps Rn onto Rn.

(j) There is an n× n matrix C such that CA = I.

(k) There is an n× n matrix D such that AD = I.

(l) AT is invertible.
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12 Subspaces of Rn

12.1 Vector Spaces and Subspaces

This section will be a quick tour of some really big topics that are imperative to the estab-
lishment of linear algebra. Instead of the in-depth dive, we will take what we need while
highlighting some of the big ideas we will be skipping past.

One of the big topics we are skipping is that of a vector space. A vector space is a set with
established rules as to how to add and scale.

There are a few vector spaces that we are specifically interested in. We’ve already seen one of
these: Rn is a vector space. The other is going to be introduced here for notational purposes.

Definition

Let Mm×n be the set of all matrices of size m×n. This set is a vector space under the
previous definitions of how to add and scale matrices.

Some of these vector space rules of addition and scaling include commutativity, associativity,
distributivity, the existence of an additive identity, and the existence of additive inverses. The
other necessities include additive closure, scalar multiplicative closure, and nonemptiness.
These last three are included in the following definition that we will focus on.

Definition

A subspace of Rn is any set H in Rn such that

• 0 ∈ H,

• H is closed under addition (that is, for each u,v ∈ H, u + v ∈ H), and

• H is closed under scalar multiplication (that is, for each c ∈ R and u ∈ H,
cu ∈ H).

There are a number of subspaces that we are specifically interested in. The first is introduced
in this example.

Example 1. Let v1,v2 ∈ Rn. Let H = span{v1,v2}. Show that H is a subspace of Rn.
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Continued...

This actually generalizes to any number of vectors, not just two.

Definition

Let v1,v2, . . . ,vp ∈ Rn. Then span{v1,v2, . . . ,vp} is called the subspace spanned
(or generated) by v1,v2, . . . ,vp. Moreover, if H is a subspace of Rn, and H =
span{v1,v2, . . . ,vp}, then we call {v1,v2, . . . ,vp} a spanning (or generating) set
for H.

Another important subspace follows immediately from this definition.

Definition

The subspace of Rn generated by {0} is called the zero subspace.
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12.2 The Four Fundamental Subspaces

Let A ∈Mm×n. From this matrix, we can produce four incredibly important subspaces: the
Column, Row, Null, and Left Null spaces.

Definition

Let A =
[
a1 a2 · · · an

]
∈ Mm×n. The column space of A, written ColA, is

ColA = span{a1, a2, . . . , an}. Thus, ColA is a subspace of Rm spanned by the columns
of A.

Definition

The null space of an m× n matrix A, written NulA is the set of all solutions of the
homogeneous equation Ax = 0. That is, NulA = {x | x ∈ Rn, Ax = 0}.

Definition

Let A ∈Mm×n. The set of all linear combinations of the row vectors is the row space
of A, denoted RowA. Since rows have n entries, RowA is a subspace of Rn. Moreover,
the rows of A are exactly the columns of AT , so RowA = ColAT .

Definition

Let A ∈ Mm×n. The left-null space of A is the set of all vectors y ∈ Rm such that
yTA = 0T (where 0 ∈ Rn – note yT , 0T are row vectors). Note that if we transpose,
we get ATy = 0. Denote the left null space of A, LNulA. Note that LNulA = NulAT .

Example 2. Let A =

−3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4

.

(a) Determine if

 3
4
11

 ∈ ColA.
(b) Determine if


2
2
0
1
1

 ∈ NulA.
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Continued...

12.3 Bases

As it turns out, each of ColA,NulA,RowA,LNulA are each subspaces generated by a set
of vectors. Each of these spaces can be expressed by a span of some vectors. For example,

in the previous example, ColA = span


−3

1
2

 ,
 6
−2
−4

 ,
−1

2
5

 ,
1

3
8

 ,
−7
−1
−4

. But also,

ColA = span


−3

1
2

 ,
 6
−2
−4

 ,
−1

2
5

 ,
1

3
8

 ,
−7
−1
−4


= span


−3

1
2

 ,
−1

2
5

 ,
1

3
8

 ,
−7
−1
−4


= span


−3

1
2

 ,
−1

2
5

 ,
1

3
8


= span


−3

1
2

 ,
−1

2
5


In each line, we see that ColA is spanned by a smaller and smaller set of vectors. So even
though the column space of A is the set of all linear combinations of all of the columns of
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A, we don’t actually need all of the columns of A to produce every vector in ColA. In fact,
we only need two of them. In this case, we have a special name for this set of two vectors.

Definition

A basis for a subspace H of Rn is a linearly independent spanning set for H.

So we would say that


−3

1
2

 ,
−1

2
5

 is a basis for ColA.

Definition

The set {e1, e2, . . . , en} is called the standard basis for Rn.

Example 3. Let A =

−3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4

. Find a basis for NulA.

Hint: A ∼

1 −2 0 −1 3
0 0 1 2 −2
0 0 0 0 0

.
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A Basis for Each of the Four Fundamental Subspaces

Let A ∈Mm×n.
Subspace A Basis
ColA The set of pivot columns of the original matrix A.
NulA The set of vectors in a parametric vector solution for Ax = 0.
RowA The set of pivot columns of the transposed matrix AT .
LNulA The set of vectors in a parametric vector solution for ATx = 0.

Example 4. Let A =

−3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4

. Find a basis for each of the four fundamental

subspaces for A.
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13 Dimension and Rank

13.1 Unique Representation

One of the main advantages of having a spanning set for a subspace H of Rn is that each
vector x ∈ H can be expressed as a linear combination of the vectors in the spanning set.

For example, if A =

−3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4

 and x =

 3
4
11

, then


−3

1
2

 ,
 6
−2
−4

 ,
−1

2
5

 ,
1

3
8

 ,
−7
−1
−4


is a spanning set for ColA. This means that because x ∈ ColA, x can be written as a linear

combination of

−3
1
2

 ,
 6
−2
−4

 ,
−1

2
5

 ,
1

3
8

 ,
−7
−1
−4

. Notice that

 3
4
11

 = 1

−3
1
2

+ 0

 6
−2
−4

+ 1

−1
2
5

+ 0

1
3
8

+ 1

−7
−1
−4


= 3

−3
1
2

+ 1

 6
−2
−4

+ 1

−1
2
5

+ 0

1
3
8

+ 1

−7
−1
−4


= −2

−3
1
2

+ 0

 6
−2
−4

+ 3

−1
2
5

+ 0

1
3
8

+ 0

−7
−1
−4


= −2

−3
1
2

+ 1

 6
−2
−4

+ 3

−1
2
5

+ 1

1
3
8

+ 1

−7
−1
−4


This is often a quandary, because x can be written as a linear combination of those vectors,
but how it can be written as a linear combination provides an infinite number of responses.

The Unique Representation Theorem

Let B = {b1,b2, . . . ,bp} be a basis for a subspace H of Rn. Then for each x ∈ H,
there exist unique scalars such that x = c1b1 + c2b2 + · · ·+ cnbn.

Proof. Since B is a basis, spanB = V , so the scalars exist. Suppose x = d1b1 + d2b2 + · · ·+
dnbn. Subtracting the two expressions for x,
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0 = x− x

= (c1b1 + c2b2 + · · ·+ cnbn)− (d1b1 + d2b2 + · · ·+ dnbn)

= (c1 − d1)b1 + (c2 − d2)b2 + · · ·+ (cn − dn)bn

Since B is linearly independent, all of the weights must be 0, so ci = di for all 1 ≤ i ≤ n.

One of the main advantages of having a basis for a subspace H of Rn is that each vector
x ∈ H can be expressed uniquely as a linear combination of the vectors in the basis.

For example, if A =

−3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4

 and x =

 3
4
11

, then


−3

1
2

 ,
−1

2
5


is a basis for ColA. This means that because x ∈ ColA, x can be written uniquely as a

linear combination of

−3
1
2

 ,
−1

2
5

. Notice that

 3
4
11

 = −2

−3
1
2

+ 3

−1
2
5



13.2 Coordinate Systems

Definition

Let B = {b1,b2, . . . ,bp} be a basis for a subspace H of Rn. For each x ∈ H, the
coordinates of x relative to B are the weights c1, . . . , cp such that

x = c1b1 + c2b2 + · · ·+ cpbp

The Rp vector of those weights, written [x]B, is given by

[x]B =

c1...
cp


and is called the coordinate vector of x (relative to B), or the B-coordinate
vector of x.
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Example 1. Let B = {b1,b2} be a basis for R2, where b1 =

[
1
−2

]
and b2 =

[
2
−1

]
.

(a) Suppose x ∈ R2 has the coordinate vector
[
x
]
B =

[
3
−2

]
, find x. Draw a representation

of this on the axes below.

(b) If y =

[
0
3

]
, find the B-coordinate vector

[
y
]
B of y.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4
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13.3 Dimension and Rank

Theorem

If a subspace H of Rn has a basis of p vectors, then every basis of H must consist of
exactly p vectors.

This gives us enough to define the dimension of a vector space.

Definition

If H is a subspace of Rn spanned by a finite set, then H is finite-dimensional,
and the dimension of H, written dimH, is the number of vectors in the basis for
H. The dimension of {0} is 0. If H is not spanned by any finite set, then H is
infinite-dimensional.

Example 2. Find the dimension of each of these spaces.

(a) R3

(b) R5

(c) Rn

(d) A plane in R3 through the origin.

(e) A line in R3 through the origin.

(f) {0}.

Example 3. Let A =

−3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4

. Find a the dimension of each of the four

fundamental subspaces for A.

Definition

Let A ∈Mm×n. The rank of A, written rankA, is dim ColA.
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Example 4. Let A =

−3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4

. Find rankA.

The Rank Theorem

Let A ∈Mm×n. Then dim ColA = dim RowA. Moreover,

• rankA+ dim NulA = n, and

• rankA+ dim LNulA = m.

Proof. Suppose A has r pivot columns. Since the pivot columns of A form a basis for ColA,
dim ColA = r, and so rankA = r. The pivots correspond to both rows and columns, so
dim RowA = r, as well. Thus, dim ColA = r = dim RowA.

Notice dim NulA is the number of free variables of Ax = 0. The free variables correspond
to columns that are not pivot columns. That is, dim NulA = n − dim ColA, so rankA +
dim NulA = n.

Since dim ColA+ dim NulA = n, replacing A with AT replaces n with m, and dim ColAT +
dim NulAT = m. Since dim ColAT = dim RowA = rankA and NulAT = LNulA, we have
rankA+ dim LNulA = m.

Example 5. If A ∈M12×14 has a 4-dimensional null space, what is the rank of A? What is
the dimension of the left null space?

Example 6. Could a 6× 9 matrix have a two-dimensional null space?
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13.4 The Fundamental Theorem of Linear Algebra

Rnn

r

n− r

RowA

NulA

0

Rm m

r

m− r

ColA

LNulA

0

A

AT

A

AT

Proposition

Let A ∈ Mm×n. Let T : Rn −→ Rm and S : Rm −→ Rn by T (x) = Ax and
S(y) = ATy. Then

ranT = RowA

ranS = ColA

kerT = NulA

kerS = LNulA

This proposition is part of a larger concept called the Fundamental Theorem of Linear
Algebra. This is a unifying concept for bases, dimension, vector spaces, matrices, and
transformations.
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13.5 The IMT Revisited

With this, we return to the IMT.

The Invertible Matrix Theorem (Version 3)

Let A be an n× n matrix. The following are equivalent:

(a) A is invertible.

(b) A is row equivalent to In.

(c) A has n pivot positions.

(d) Ax = 0 has only the trivial solution.

(e) The columns of A are linearly inde-
pendent.

(f) The linear transformation x 7→ Ax
is one-to-one.

(g) Ax = b has a unique solution for
each b ∈ Rn.

(h) The columns of A span Rn.

(i) The linear transformation x 7→ Ax
maps Rn onto Rn.

(j) There is an n×n matrix C such that
CA = I.

(k) There is an n×n matrix D such that
AD = I.

(l) AT is invertible.

(m) The columns of A form a basis for
Rn.

(n) ColA = Rn

(o) dim ColA = n

(p) rankA = n

(q) NulA = {0}

(r) dim NulA = 0
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14 Determinants

14.1 Defining the Determinant

The determinant of a matrix is going to be a number meant to represent an entire matrix.
This number has a lot of interpretations and is very flexible, though we will focus only on
a single application of the determinant. We will proceed by defining the determinant of a
square matrix by using the Principle of Mathematical Induction on the size of the matrix.

Definition

For the uninteresting 1× 1 matrix, we define detA = det
[
a11
]

= a11.

We know how to compute detA when A is 2 × 2. Recall that if A =
[
aij
]
, then detA =

|A| = a11a22 − a12a21.

Consider a 3× 3 matrix A =
[
aij
]

with a11 6= 0. Then

A ∼

a11 a12 a13
0 a11a22 − a12a21 a11a23 − a13a21
0 0 a11∆


where ∆ = a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31.

By the IMT, A is invertible iff A has 3 pivots. Notice that since a11 6= 0, ∆ determines
whether A will be invertible (if ∆ 6= 0) or not (if ∆ = 0).

Definition

For a 3× 3 matrix A =
[
aij
]
,

∆ = a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31

is the determinant of A.

Definition

Define Aij to be the submatrix obtained from A by deleting the ith row and jth
column of A.
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Example 1. For the 3×3 matrixA =
[
aij
]

findA11, A12, andA13. Then find |A11|, |A12|, |A13|.

This gives us a strategy for finding detA using smaller matrices.
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Definition

For n ≥ 2, the determinant of an n × n matrix A =
[
aij
]

is the sum of n terms of
the form ±a1j detA1j, with ± alternating. That is,

detA =
n∑
j=1

(−1)1+ja1j detA1j

= +a11 detA11 − a12 detA12 + a13 detA13 −+ · · ·+ (−1)1+na1n detA1n

Example 2. Let A =

1 5 0
2 4 −1
0 −2 0

. Find detA.

Even though we can now compute a determinant, we will explore some alternative methods
of computation to provide more flexibility.

Definition

Given A =
[
aij
]
, the (i, j)-cofactor of A is the number Cij = (−1)i+j detAij. Thus,

detA =
n∑
j=1

(−1)1+ja1j detA1j =
n∑
j=1

a1jC1j. This formula is the cofactor expansion

across the first row of A.
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Theorem

If A is n× n, then detA can be computed by a cofactor expansion across any row or
down any column. Thus,

detA =
n∑
j=1

aijCij = ai1Ci1 + ai2Ci2 + · · ·+ ainCin

=
n∑
i=1

aijCij = a1jC1j + a2jC2j + · · ·+ anjCnj

Notice Cij has an alternating sign dependent upon this checkerboard:
+ − + − · · ·
− + − +
+ − + −
...

. . .


Figure 3: The sign of Cij

This theorem is particularly powerful when there is a lot of zeros in the matrix.

Example 3. Let A =


2 7 1 8 2 8
0 3 1 4 1 5
0 0 −1 6 4 1
0 0 0 1 5 0
0 0 0 2 4 −1
0 0 0 0 −2 0

. Find detA.
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Continued...

The was easy because of all of the zeros. Matrices like this are called triangular.

Definition

An n × n matrix A is upper-triangular if all entries below the main diagonal are
zero. It is lower-triangular if all entries above the main diagonal are zero. It is
triangular if it is either lower- or upper-triangular.

Theorem

If A is a triangular matrix, then detA is the product of the entries on its main diagonal.

The proof is repeated use of cofactor expansion.

Example 4. If A =



1 1 1 1 1 1 1
0 2 2 2 2 2 2
0 0 3 3 3 3 3
0 0 0 4 4 4 4
0 0 0 0 5 5 5
0 0 0 0 0 6 6
0 0 0 0 0 0 7


, find detA.
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15 Properties of the Determinant

15.1 Determinants and Row Reduction

We haven’t looked at this result specifically, but intuitively, when we row reduce to find REF
of a square matrix, we end up with a triangular matrix. Now suppose we compute detA and
det REFA. Which do we anticipate is easier? How are they related?

Theorem

Let A be a square matrix, and let B be obtained from A by an ERO. Then detB =...
ERO Effect detB
Replacement Invariant detB = detA
Interchange Opposite detB = − detA
Scaling by k Scale by k detB = k detA

The most complicated of the EROs when computing a determinant is scaling. A common
strategy is to “factor out” common multiples of a row. That is,

det

∗ ∗ ∗
3 −9 6
∗ ∗ ∗

 = 3 det

∗ ∗ ∗
1 −3 2
∗ ∗ ∗



Example 1. Let A =


2 −8 6 8
3 −9 5 10
−3 0 1 −2
1 −4 0 6

. Find detA.
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15.2 Some Theory Related to the Determinant

Suppose A is a square matrix, and U = REF(A). Since U is obtained from A by interchanges
and replacements (it does not require scaling), detA = ± detU . Since U is triangular, detU
is the product of the pivots. Thus, detA must be either the product of the pivots of U or
its opposite.

Recall that if A is singular, then A does not have a full set of pivots, so at least one diagonal
entry of U must be 0. Thus...

Theorem

A square matrix A is invertible iff detA 6= 0.

We can now include this in the IMT.

Example 2. Let A =


2 −8 6 8
3 −9 5 10
−3 0 1 −2
1 −4 0 6

. Is A invertible or singular?

Theorem

If A is square, then detA = detAT .

Theorem

If A,B are n× n matrices, then detAB = (detA)(detB).

Note: det(A+B) 6= detA+ detB
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The Invertible Matrix Theorem (Version 4)

Let A be an n× n matrix. The following are equivalent:

(a) A is invertible.

(b) A is row equivalent to In.

(c) A has n pivot positions.

(d) Ax = 0 has only the trivial solution.

(e) The columns of A are linearly inde-
pendent.

(f) The linear transformation x 7→ Ax
is one-to-one.

(g) Ax = b has a unique solution for
each b ∈ Rn.

(h) The columns of A span Rn.

(i) The linear transformation x 7→ Ax
maps Rn onto Rn.

(j) There is an n×n matrix C such that
CA = I.

(k) There is an n×n matrix D such that
AD = I.

(l) AT is invertible.

(m) The columns of A form a basis for
Rn.

(n) ColA = Rn

(o) dim ColA = n

(p) rankA = n

(q) NulA = {0}

(r) dim NulA = 0

(s) detA 6= 0.
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16 Introduction to Eigenvalues & Eigenvectors

16.1 What Are Eigenvalues and Eigenvectors?

Suppose A =

[
3 −2
1 0

]
, u =

[
−1
1

]
,v =

[
2
1

]
. Consider the images of u and v under x 7→ Ax.

x1

x2

v

Av

u

Au

Note that Au is a complicated transformation, but Av is quite simple – in fact, Av = 2v.

We will study equations such as Ax = 2x or Ax = −7x. That is, we will explore when
complicated transformations (matrix multiplication) can be computed in significantly simpler
ways (scalar multiplication).

Definition

Let A ∈ Mn×n. An eigenvector of A is a nonzero vector x such that Ax = λx for
some scalar λ. A scalar λ is called an eigenvalue of A if there is a nontrivial solution
x of Ax = λx – such an x is called an eigenvector corresponding to λ.

Notice that eigenvectors must not be 0, since it must correspond to a nontrivial solution.

Example 1. Let A =

[
1 6
5 2

]
, u =

[
6
−5

]
, v =

[
3
−2

]
.

(a) Determine if u,v are eigenvectors of A.

(b) Show that 7 is an eigenvalue of A.
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Continued...

Proposition

The scalar λ is an eigenvalue of A ∈Mn×n iff (A− λI)x = 0 has a nontrivial solution.

Definition

The set of all solutions to (A − λI)x = 0 is precisely Nul(A − λI). So this set is a
subspace of Rn. We call this the eigenspace of A corresponding to λ, and this space
consists of all of the eigenvectors of A corresponding to λ in addition to 0.

Figure 4: From Lay, Lay, McDonald’s Linear Algebra and its Applications, 5th Edition
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The action of multiplying by A on eigenspace vectors is scaling by the eigenvalue.

16.2 Finding a Basis for an Eigenspace

Example 2. Suppose we know that an eigenvalue of the matrix A =

4 −1 6
2 1 6
2 −1 8

 is 2. Find

a basis for the corresponding eigenspace.

In the previous example, what is the action of multiplying by A on the eigenspace? (Dilation
by a factor of 2 – doubles each vector).
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Theorem

The eigenvalues of a triangular matrix are the entries on its main diagonal.

Example 3. What are the eigenvalues of A =

1 2 3
0 4 5
0 0 6

 and B =

−5 0 1
0 0 2
0 0 −1

?

Proposition

A square matrix A is invertible iff 0 is not an eigenvalue of A.

Theorem

If v1, . . . ,vr are eigenvectors that correspond to distinct eigenvalues λ1, . . . , λr of an
n× n matrix A, then the set {v1, . . . ,vr} is linearly independent.

The Invertible Matrix Theorem (Version 5)

Let A be an n× n matrix. The following are equivalent:

(a) A is invertible.

(b) A is row equivalent to In.

(c) A has n pivot positions.

(d) Ax = 0 has only the trivial solution.

(e) The columns of A are linearly inde-
pendent.

(f) The linear transformation x 7→ Ax
is one-to-one.

(g) Ax = b has a unique solution for
each b ∈ Rn.

(h) The columns of A span Rn.

(i) The linear transformation x 7→ Ax
maps Rn onto Rn.

(j) There is an n×n matrix C such that
CA = I.

(k) There is an n×n matrix D such that
AD = I.

(l) AT is invertible.

(m) detA 6= 0.

(n) The columns of A form a basis for
Rn.

(o) ColA = Rn

(p) dim ColA = n

(q) rankA = n

(r) NulA = {0}

(s) dim NulA = 0

(t) 0 is not an eigenvalue of A
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17 The Characteristic Equation

17.1 Finding the Eigenvalues of a Matrix

We just learned that λ is an eigenvalue of A iff A − λI is singular. By the IMT, the
determinant of a singular matrix must be 0. It follows that

λ is an eigenvalue of A
iff

A− λI is singular
iff

det(A− λI) = 0.

Definition

The equation det(A− λI) = 0 is called the characteristic equation of A. A scalar
λ is an eigenvalue of A ∈Mn×n iff λ is a solution to the characteristic equation of A.
The characteristic equation will always be a polynomial equations, and det(A−λI) is
called the characteristic polynomial.

Example 1. Find the eigenvalues of A =

[
3 −2
1 0

]
.

17.2 A Shortcut for 2 by 2 Matrices

Matrices of size 2 × 2 are incredibly common, and that’s why we have some shortcuts for
these small matrices. Here’s one for eigenvalues.

Definition

The trace of a square matrix A is the sum of the entries on its main diagonal.

Example 2. Let A =

[
a b
c d

]
.
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(a) Find detA.

(b) Find trA.

(c) Find charA.

Proposition

If A =

[
a b
c d

]
, then charA = λ2 − trAλ+ detA.

Example 3. Find the eigenvalues of A =

[
2 3
3 −6

]
.

17.3 Theory and Similarity

Example 4. A matrix A is 6× 6 and has characteristic polynomial λ6 − 4λ5 − 12λ4. Find
the eigenvalues (and their multiplicities) of A. Is A singular or invertible?
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Finding the eigenvalues of an n×n matrix results in solving a polynomial equation of degree
n – this is almost always extremely difficult, so we leave this to computers, except in the
2× 2 case, which is not so hard.

Similarity is a direct application of the characteristic equation, and we will see similarity a
bit in the near future.

Definition

Let A,B ∈Mn×n. Then A is similar to B if there is an invertible matrix P such that
P−1AP = B or A = PBP−1 (If Q = P−1, then B = QAQ−1, so B is similar to A).
The transformation A 7→ P−1AP is called a similarity transform.

Theorem

If A,B ∈ Mn×n are similar, then A and B have the same characteristic polynomial
(and hence eigenvalues).

Proof. If B = P−1AP , then

det(B − λI) = det(P−1AP − λP−1IP ) = det(P−1(A− λI)P ) = detP−1 det(A− λI) detP

= detP−1 detP det(A− λI) = det(P−1P ) det(A− λI) = det(A− λI)
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18 Diagonalization

18.1 Powers of a Matrix

It is often the case that we write expressions in different ways in order to see different pieces
of information. Here are two examples from the past.

Equation of a Line Name Advantage
Ax+By = C Standard Form Easy to generalize
y − y1 = m(x− x1) Point-Slope Form We can see the slope and a point
y = mx+ b Slope-Intercept Form We can see the slope and the y-intercept;

easy to write as a function

Equation of a Parabola Name Advantage
y = ax2 + bx+ c Standard Form Easy to generalize;

we can see the y-intercept
ax2 + bx+ cy + d = 0 Conic Section Form Recognize a parabola as a conic
y = a(x− h)2 + k Vertex Form We can see the vertex
y = a(x− r1)(x− r2) Factored Form We can see the x-intercepts

Each of these tables shows an object written in several different forms, and each form offers
different information about the expression just by looking at it.

For us, we are going to start factoring a matrix. This particular factorization will be beneficial
for us when we try to take a power of a matrix, which we have found notoriously difficult.

Example 1. Let D =

[
2 0
0 3

]
. Compute D2, D3, Dk.
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Example 2. Let A =

[
7 2
−4 1

]
. Verify that A = PDP−1, where P =

[
1 1
−1 −2

]
and

D =

[
5 0
0 3

]
, and find a formula for Ak.

18.2 The Diagonalization Theorem

Definition

A square matrix A is diagonalizable if A is similar to a diagonal matrix – A = PDP−1

for some invertible P .

The Diagonalization Theorem

A ∈Mn×n is diagonalizable iff A has n linearly independent eigenvectors.
Moreover, A = PDP−1 where D is diagonal iff the columns of P are n linearly inde-
pendent eigenvectors of A. In this case, the diagonal entries of D are eigenvalues of A
that correspond, respectively, to the eigenvectors in P .
That is, A is diagonalizable iff there are enough eigenvectors of A to form a basis for
Rn, and we call such a basis an eigenvector basis of Rn.
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Proof. Write P =
[
v1 v2 · · · vn

]
and D =


λ1 0 · · · 0
0 λ2 · · · · · ·
...

...
. . .

...
0 0 · · · 0

. Recall that

AP = A
[
v1 v2 · · · vn

]
=
[
Av1 Av2 · · · Avn

]

Consider PD = P


λ1 0 · · · 0
0 λ2 · · · · · ·
...

...
. . .

...
0 0 · · · 0

 =
[
λ1v1 λ2v2 · · · λnvn

]
.

Suppose A is diagonalizable and A = PDP−1. Right-multiplying by P , we have AP = PD.
Then [

Av1 Av2 · · · Avn
]

=
[
λ1v1 λ2v2 · · · λnvn

]
Equating columns,

Av1 = λ1v1 Av2 = λ2v2 · · · Avn = λnvn

Since P is invertible, v1, . . . ,vn are linearly independent and nonzero. Thus, λ1, . . . , λn
are eigenvalues with corresponding eigenvectors v1, . . . ,vn. This proves Diagonalizable ⇒
eigenvectors.

On the other hand, suppose v1, . . . ,vn are linearly independent eigenvectors corresponding
to λ1, . . . , λn, and construct P and D as before. Then AP = PD, as before. Since v1, . . . ,vn
are linearly independent, P is invertible, and A = PDP−1, so A is diagonalizable.

Algorithm for Diagonalizing a Square Matrix

1) Find the eigenvalues of A.

2) Find n linearly independent eigenvectors. If they cannot be found, then A is not
diagonalizable.

3) Construct P =
[
v1 · · · vn

]
4) Construct D, the diagonal matrix whose diagonal entries are the corresponding

eigenvalues of A.

5) A = PDP−1.
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Example 3. Diagonalize A =

 1 3 3
−3 −5 −3
3 3 1

. It suffices to find a diagonal matrix D and

an invertible matrix P such that A = PDP−1.
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19 Inner Products, Lengths, and Orthogonality

19.1 Inner Products

It is often the case that vectors are introduced as quantities that have both size and direction.
This is not how we introduced it in this course, but vectors do nevertheless have size and
direction. We will explore that in this section.

Definition

Let u,v ∈ Rn be considered as matrices. Then uTv is a 1×1 matrix, which is a scalar,
and is called the inner product of u and v, written u ·v. This is sometimes known
as the dot product.

Example 1. Let u =

 1
−3
4

 and v =

−1
−2
6

. Compute u · v and v · u.

Inner Product Properties

Let u,v,w ∈ Rn, c be a scalar. Then

• u · v = v · u

• (u + v) ·w = u ·w + v ·w

• (cu) · v = c(u · v) = u · (cv)

• u · u ≥ 0 and u · u = 0 iff u = 0

The last property is exceedingly important and is called the positive definite property of
the inner product. Since u · u ≥ 0, we can take the square root of it.
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19.2 Length and Unit Vectors

Definition

The magnitude (or norm or length) of v is the nonnegative scalar |v| is defined by
|v| =

√
v · v =

√
v21 + v22 + · · ·+ v2n and |v|2 = v · v.

This allows us to find the size of any vector in Rn!
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Proposition

For any v ∈ Rn and scalar c, the length of cv is |c| times the length of v; that is
|cv| = |c||v|.

Proof.
|cv|2 = (cv) · (cv) = c2(v · v) = c2|v|2

Now, |cv|2 = c2|v|2, so finding the square root of both sides, |cv| = |c||v|.

We will study vectors of length 1 quite a bit. Such vectors can be created by scaling a
nonzero vector by the reciprocal of its length. This process is called normalization.

Definition

A vector with length 1 is a unit vector. If v 6= 0, then u = 1
|v|v is a unit vector in

the same direction as v. The process of creating u from v is called normalizing v.

Example 2. Let v =


1
2
−2
0

. Find a unit vector u in the same direction as v.
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19.3 Distance Between Vectors

In R, the distance between two numbers is |a − b|. In higher dimensions, the same idea
persists.

Definition

If u,v ∈ Rn, the distance between u and v, written dist(u,v) is the length of u−v.
That is, dist(u,v) = |u− v|.

Example 3. Verify that this distance formula matches the distance formula in R2.

19.4 Orthogonal Vectors

Definition

Two vectors u,v ∈ Rn are orthogonal if u · v = 0.

Example 4. Let v,0 ∈ Rn. Show v is orthogonal to 0.

The Pythagorean Theorem

Two vectors u and v are orthogonal iff |u + v|2 = |u|2 + |v|2.
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Definition

Let W be a subspace of Rn. If z is orthogonal to every vector in W , then z is
orthogonal to W . The set of all z that are orthogonal to W is the orthogonal
complement of W , denoted W⊥.

Suppse W is a plane through 0 in R3 and L is the line through 0 perpendicular to W (this

is called a normal line to W ). If u ∈ W and v ∈ L, then
←→
0u ⊥ ←→0v, so each vector on L

is perpendicular to each vector on W . In fact, these are the only vectors. That is, L = W⊥

and W = L⊥.

Proposition

Let W be a subspace of Rn. Then x ∈ W⊥ iff x is orthogonal to every vector in a
spanning set for W . Moreover, W⊥ is a subspace of Rn.

Theorem

Let A ∈ Mm×n. The Row and Null spaces are orthogonal complements, and the
Column and Left Null spaces are orthogonal complements. That is, (RowA)⊥ = NulA
and (ColA)⊥ = LNulA. Moreover, if T and S are the linear transformations defined
by T (x) = Ax and S(x) = ATx, then (ranS)⊥ = kerT and (ranT )⊥ = kerS.

Proposition

If u,v ∈ Rn, then u · v = |u||v| cos θ.

Proof. By the law of cosines, |u− v|2 = |u|2 + |v|2 − 2|u||v| cos θ.

2|u||v| cos θ = |u|2 + |v|2 − |u− v|2

|u||v| cos θ =
1

2
(u21 + u22 + v21 + v22 − (u1 − v1)2 − (u2 − v2)2)

= u1v1 + u2v2 = u · v

This proves for R2. Similar proof for R3. In higher dimensions, we can use this to define the
angle between two Rn vectors.
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20 Orthogonal Sets

20.1 What is an Orthogonal Set?

Definition

A set of vectors {u1, . . . ,up} in Rn is an orthogonal set if each pair of distinct vectors
from this set is orthogonal. That is, ui · uj = 0 whenever i 6= j.

Theorem

If S = {u1, . . . ,up} is an orthogonal set of nonzero vectors in Rn, then S is linearly
independent and is hence a basis for the subspace spanned by S.

Proof. Suppose S is orthogonal. Let 0 = c1u1 + · · · + cpup for some scalars c1, . . . , cp. We
need to show S is linearly independent, and so we must show c1 = · · · = cp = 0. Consider

0 = 0 · u1

= (c1u1 + · · ·+ cpup) · u1

= (c1u1) · u1 + (c2u2) · u1 + · · ·+ (cpup) · u1

= c1(u1 · u1) + c2(u2 · u1) + · · ·+ cp(up · u1)

= c1(u1 · u1)

Since u1 6= 0, u1 ·u1 6= 0. Thus c1 = 0. Doing this process with u2, . . . ,up shows c2, . . . , cp =
0. Thus S is linearly independent.

Definition

An orthogonal basis for a subspaceW of Rn is a basis forW that is also an orthogonal
set.

Theorem

Let {u1, . . . ,up} be an orthogonal basis for a subspace W of Rn. For each y ∈ W ,the

weights in the linear combination y = c1u1 + · · · + cpup are given by cj =
y · uj
uj · uj

,

where j = 1, . . . , p.

This theorem states that given an orthogonal basis, the coefficients in any linear combination
are easily computed.

Proof. Assume {u1, . . . ,up} is orthogonal and let y = c1u1 + · · ·+ cpup. Consider

y · u1 = (c1u1 + · · ·+ cpup) · u1 = c1(u1 · u1)
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as in the previous proof. Since u1 · u1 6= 0, we can find c1 =
y · u1

u1 · u1

. Similar for the

others.

Example 1. Let u1 =

3
1
1

, u2 =

−1
2
1

 ,u3 =

−1
2

−2
7
2

 ,y =

 6
1
−8

. Show that S =

{u1,u2,u3} is an orthogonal basis for R3 and find
[
y
]
S
.

20.2 Orthogonal Projections

Given a nonzero vector u ∈ Rn, we sometimes want to decompose y ∈ Rn as the sum of two
vectors – one parallel to u, and one orthogonal to u.

We wish to write
y = ŷ + z

= (αu)︸︷︷︸
parallel to u

+ (y − αu)︸ ︷︷ ︸
orthogonal to u

We want z to be a vector orthogonal to u. Notice that

z = y − ŷ
iff

y − ŷ is orthogonal to u
iff

Damien Adams Page 98 of 107



MTH 261 Guided Notes

0 = (y − αu) · u
= y · u− (αu) · u
= y · u− α(u · u)

Thus, α(u · u) = y · u, and α =
y · u
u · u

. Moreover, ŷ =
y · u
u · u

u.

Definition

The vector ŷ is called the orthogonal projection of y onto u, written ŷ = proju y =
y·u
u·uu. The vector z = y − proju y is called the component of y orthogonal to u.

Example 2. Let y =

[
2
6

]
and u =

[
7
1

]
. Write y as a sum of two vectors – one in span u

and the other orthogonal to u.
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20.3 Orthonormal Bases

Definition

A set {u1, . . . ,up} is an orthonormal set if it is an orthogonal set of unit vectors. If
W = span{u1, . . . ,up}, then {u1, . . . ,up} is an orthonormal basis for W .

Example 3. Is the standard basis for Rn an orthonormal basis?

Example 4. Let u1 =

3
1
1

, u2 =

−1
2
1

 ,u3 =

−1
2

−2
7
2

. normalize u1,u2,u3. Determine if

these three normalized vectors form an orthonormal basis for R3.

Matrices whose columns form an orthonormal set are very important in applications and
have wonderful properties. They simplify computations incredibly.

Theorem

U ∈Mm×n has orthonormal columns iff UTU = I.
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Proof. We will prove for 2× 2 matrices – general case is parallel.

Let U =
[
u1 u2

]
. Then

UTU =

[
uT1
uT2

] [
u1 u2

]
=

[
uT1 u1 uT1 u2

uT2 u1 uT2 u2

]
The entries are inner products using transpose notation. Thus, the columns are orthogonal
iff uT1 u2 = uT2 u1 = 0. The columns have unit length iff |u1|2 = uT1 u1 = 1 and |u2|2 = uT2 u2 =
1.

Example 5. If U has orthonormal columns, is U invertible? If so, what is U−1?

Theorem

A square matrix U is orthogonal if UTU = I.

Theorem

Let U ∈Mm×n be orthogonal, x,y ∈ Rn. Then

a. |Ux| = |x|

b. (Ux) · (Uy) = x · y

c. (Ux) · (Uy) = 0 iff x · y = 0

This theorem essentially says the linear mapping x 7→ Ux preserves lengths and orthogonality
which is often mandatory for computer algorithms.
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21 Orthogonal Projections

Let W be a subspace of Rn. If y ∈ Rn, it is often useful to be able to write y = z1 + z2,
where z1 ∈ W and z2 ∈ W⊥, especially given orthogonal bases.

The Orthogonal Decomposition Theorem

Let W be a subspace of Rn. Then each y ∈ Rn can be written uniquely in the form
y = ŷ + z, where ŷ ∈ W and z ∈ W⊥.

Proof. Let {u1, . . . ,up} be any orthogonal basis for W , and define

ŷ =
y · u1

u1 · u1

u1 + · · ·+ y · up
up · up

up

Then ŷ ∈ W = span{u1, . . . ,up}. Let z = y − ŷ. Since u1 is orthogonal to u2, . . . ,up. It
follows that

z · u1 = (y − ŷ) · u1 = y · u1 −
(

y · u1

u1 · u1

)
u1 · u1 − 0− 0− · · · − 0 = y · u1 − y · u1 = 0

So z is orthogonal to u1. Similarly, z is orthogonal to each uj in the basis for W . So z ∈ W⊥.

For uniqueness, suppose y = ŷ1 + z1, where ŷ1 ∈ W and z1 ∈ W⊥. Then ŷ + z = ŷ1 + z1,
so ŷ− ŷ1 = z1 − z. Since ŷ− ŷ1 ∈ W , z1 − z ∈ W⊥, and the two are equal, they must each
be 0. Thus, ŷ = ŷ1 and z1 = z.

Example 1. Let {u1,u2,u3,u4,u5} be an orthogonal basis for R5 and W be the subspace
of R5 generated by u1,u2. Let y = c1u1 + · · ·+ c5u5. Write y as the sum of a vector ŷ ∈ W
and z ∈ W⊥.

The uniqueness of this decomposition shows that the orthogonal projection ŷ depends only
on W and not on the basis.

Best Approximation Theorem

Let W be a subspace of Rn, y ∈ Rn, and ŷ = projW y. Then ŷ is the closest point in
W to y.
The vector ŷ is called the best approximation to y by elements of W . The
distance between y and a vector v ∈ W used to approximate y can be thought of as
the error of using v instead of y. The Best Approximation Theorem states this error
is minimized when v = ŷ.
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Proof. Let v ∈ W be distinct from ŷ. Then ŷ− v ∈ W . By the Orthogonal Decomposition
Theorem, y − ŷ ∈ W⊥. In particular, y − ŷ is orthogonal to ŷ − v (∈ W ).

Since y−v = (y− ŷ) + (ŷ−v), the Pythagorean Theorem says |y−v|2 = |y− ŷ|+ |ŷ−v|2.
Thus

|y − ŷ|2 = |y − v|2 − |ŷ − v|2

Since v and ŷ are distinct, |ŷ − v|2 > 0, and so ŷ is the closest point in W to y.

Example 2. If u1 =

 2
5
−1

, u2 =

−2
1
1

, y =

1
2
3

, W = span{u1,u2}. Find the distance

from y to W .

If the basis for W happens to be orthonormal, then computations are simplified greatly.

Theorem

If {u1, . . . ,up} is an orthonormal basis for a subspace W of Rn, then

projW y = (y · u1)u1 + (y · u2)u2 + · · ·+ (y · up)up

If U =
[
u1 u2 · · · up

]
, then projW y = UUTy for all y ∈ Rn.

Proof. From the Orthogonal Decomposition Theorem, the denominators of the weights of
each uj is uj · uj = |uj|2 = 12 = 1.
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22 The Gram-Schmidt Process

22.1 Gram-Schmidt

Clearly, orthogonal bases are nice. They have unique representation of vectors with pre-
dictable weights. Projecting vectors onto spaces generated by orthogonal bases also have
very nice expressions.

The Gram-Schmidt Process is an algorithm for producing an orthogonal or orthogonal basis
for any nonzero subspace of Rn.

The Gram-Schmidt Process: An Algorithm for Producing an Orthogonal Basis

Given a basis {x1, . . . ,xp} for a nonzero subspace W or Rn, let

v1 = x1

v2 = x2 − projv1
x2

v3 = x3 − projv1
x3 − projv2

x3

...

vp = xp − projv1
xp − projv2

xp − · · · − projvp−1
xp

Then {v1, . . . ,vp} is an orthogonal basis for W .

Example 1. Let x1 =


1
1
1
1

, x2 =


0
1
1
1

, x3 =


0
0
1
1

. Then X = {x1,x2,x3} is a basis for a

subspace W of R4. Construct an orthonormal basis for W .
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Continued...
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22.2 QR Factorization

Suppose A ∈ Mm×n has linearly independent columns. Then applying Gram-Schmidt on A
will result in a factorization of A called a QR-factorization, used often in applications for
solving and finding eigenvalues.

QR Factorization

If A ∈ Mm×n has linearly independent columns, then A can be factored as A = QR,
where Q ∈ Mm×n consists of columns that form an orthogonal basis for ColA, and
R ∈Mn×n is an upper-triangular matrix with positive diagonal entries.

Proof. The columns of A form a basis {x1,x2, . . . ,xn} for ColA. Use Gram-Schmidt (or an-
other method) to form an orthogonal basis {u1,u2, . . . ,un} for ColA. LetQ =

[
u1 u2 · · · un

]
.

For k = 1, . . . , n, xk ∈ span{x1, . . . ,xn} = span{u1, . . . ,un}. Thus,

xk = r1ku1 + · · ·+ rkkuk + 0uk+1 + · · ·+ 0un

We may assume rkk > 0. Thus, xk is a linear combination of the columns of Q using weights
from

rk =



r1k
...
rkk
0
...
0


Hence, xk = Qrk for k = 1, . . . , n. Let R =

[
r1 · · · rn

]
. It follows that

A =
[
x1 · · · xn

]
=
[
Qr1 · · · Qrn

]
= QR

Since R is square, upper triangular, and its main diagonal entries are nonzero, detR 6= 0.
Thus, R is invertible.

Proposition

If A ∈ Mm×n has linearly independent columns and QR factorization A = QR, then
R = QTA.

Proof. QTA = QT (QR) = (QTQ)R = IR = R.
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Example 2. Find a QR factorization for A =


1 0 0
1 1 0
1 1 1
1 1 1

.
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