A Brief History of Metalworking

- 3300 BC
 - Earliest examples of welding: Egyptian pressure welded box
- 1200 BC
 - Egyptians begin welding iron
- Middle Ages
 - Forge welding evolves using hammering techniques
- 1800
 - An arc between two carbon electrodes is created by Sir Humphry Davy and stabilized in 1802 by Vasily Petrov
- 1881
 - Carbon arc welding introduced by Russian inventor Nikolay Benardos
- 1900
 - Coated metal electron introduced
 - Gas welding perfected
- 1920
 - Automatic feed electrode introduced by P.O. Nobel at GE
- 1941
 - GTAW (Gas Tungsten Arc Welding)/TIG Welding perfect after years of development
- 1948
 - GMAW (Gas Metal Arc Welding)/MIG developed by combining shielded gas nozzle and automatic feed
- 1957
 - Plasma arc is discovered and applied to welding and cutting processes

Mild Steel

What is mild steel?

Mild steel is a ferrous metal alloy made of iron and carbon. The carbon content of mild steel is very low, any higher and it would be considered cast iron. The particular balance of iron and carbon allows for high ductility, machinability and weldability which makes mild steel perfect for many general fabrication applications.

How do we fabricate with mild steel

There are four main things we will commonly do with mild steel to make new objects, to simplify;

- Cutting
- Shaping
- Joining
- Finishing

Cutting

Cutting steel is done to shape the material into parts we can use. This is commonly done in a few ways;

- Abrading (Cut off Wheel, Abrasive Chop Saw)
- Cutting (Cold Saw, Bandsaw, Shear, Throatless Shear, Tin Snips, Nibbler)
- Melting (Plasma Cutter, Laser Cutter)

Shaping

Shaping is done with a variety of tools and methods;

- Simple Shaping (Brake, Flat Roller and Rod Bender)
- Compound Shaping (English Wheel, Smithing, Pressing, Spinning)
- Hot Shaping (heat assisted)

Joining

- Hot Connections • Welding
- Cold Connections
 - nuts and bolts
 - Rivets
 - Solid Rivets
 - Pop Rivets

Finishing

Finishing for steel is generally done in two stages;

- Sanding and Polishing (Grinder, Sander, Buffing Wheel, Sand Blaster, Tumbler)
- Additive Finishing (Waxing, Chemical Patina, Powder Coating, Painting, Plating)

Grinding

Mig Welding

Π

<u>M</u>etal

nert

MIG Welding Setup

Welder Settings

General Welding Guidelines

Welding Guidelines for Carbon and Low Alloy Steel

Welding Guidelines for Carbon and Low Alloy Steel Short-Circuiting Transfer — Horizontal Fillets and Flat Butt Joints

CTWD ⁽¹⁾ : 1/2" (13mm) Gas: 100% CO ₂ Gas flow: 25 to 35 cfh (12 to 17 L/min.)	R = 0 - 1/16" (0 - 1.6mm)														
Plate Thickness - (mm)	24 ga (0.6)		20 ga (0.9)		16 ga (1.5)		14 ga (2)		12 ga (3)		10 ga (4)		3/16" (5)	1/4" (6)	
Electrode Dia in.	0.025	0.030	0.030	0.035	0.030	0.035	0.030	0.035	0.030	0.035	0.030	0.035	0.045	0.045	0.045
(mm)	(0.6)	(0.8)	(0.8)	(0.9)	(0.8)	(0.9)	(0.8)	(0.9)	(0.8)	(0.9)	(0.8)	(0.9)	(1.1)	(1.1)	(1.1)
WFS - in./min	100	75	125	100	175	150	225	175	275	225	300	250	125	150	200
(M/min.)	(2.5)	(1.9)	(3.2)	(2.5)	(4.4)	(3.8)	(5.7)	(4.4)	(7.0)	(5.7)	(7.6)	(6.4)	(3.2)	(3.8)	(5.0)
Amps (Approximate)	35	35	55	80	80	120	100	130	115	160	130	175	145	165	200
Travel Speed - in./min	10	10	14	13	13	20	18	18	20	20	17	20	18	15	13
(M/min.)	(0.25)	(0.25)	(0.35)	(0.33)	(0.33)	(0.50)	(0.45)	(0.45)	(0.50)	(0.50)	(0.43)	(0.50)	(0.45)	(0.38)	(0.33)
Voltage ⁽²⁾ (DC+)	17	17	18	18	19	19	20	20	21	21	22	22	18-20	19-21	20-22

Contact to Work Distance

1/2" - 5/8"

Electrode* Extension

1/4" - 3/8"

*welding rod or wire

Semicircular Motion

.

Circular Motion

Weave Movements

Types of Welds

Weld Troubleshooting