Product Rule

When multiplying two expressions that have the same base, simplify the product by adding the exponents.

$$
x^{m} \cdot x^{n}=x^{m+n}
$$

Power to a Power Rule

When a base is raised to an exponent and that expression is raised to another exponent, multiply the exponents.

$$
\left(x^{m}\right)^{n}=x^{m \cdot n}
$$

Product to a Power Rule

When a product is raised to an exponent, apply the exponent to each factor in the product. Important, please put each factor in a ().

$$
(x y)^{n}=(x)^{n}(y)^{n}
$$

Quotient Rule

When dividing two expressions that have the same base, simplify the quotient by subtracting the exponents.

$$
\frac{a^{n}}{a^{m}}=a^{n-m} \quad a \neq 0
$$

Quotient to a Power Rule

When there is a fraction to a power, separately raise the numerator and denominator to that power. Important, please put numerator in a separate () and he denominator in a separate ().

$$
\left(\frac{a}{b}\right)^{n}=\frac{(a)^{n}}{(b)^{n}}
$$

Zero Exponent Rule

When there is a non-zero base to a power of zero, the result is one.

$$
a^{0}=1 \quad a \neq 0
$$

Negative Exponent Rule

When there is a base with a negative exponent in a fraction, it can be flipped to either side of the fraction and the exponent will change to positive.

$$
a^{-n}=\frac{1}{a^{n}}
$$

and

$$
\frac{1}{a^{-n}}=a^{n}
$$

Taken together, these facts tell us that a negative exponent power in the numerator belongs in the denominator (with a positive exponent) and a negative exponent power in the denominator belongs in the numerator (with a positive exponent). In other words, you can see a negative exponent as telling you to flip things in and out of the numerator and denominator of an expression.

