Introductions to Functions

In order to understand functions we first look at a relation.
A relation is a set of ordered pairs. Example:
$\{(2,3),(4,5),(8,20)\}$
The set of x-coordinates is called the domain and the set of y-coordinates is called the range. In the relation: $\{(2,3),(4$, $5),(8,20)\}$, the domain would be $\{2,4,8\}$ and the range would be $\{3,5,20\}$.

A function is a relation that assigns each x-value to exactly one y-value. This means that if you given a x-value like 10 , it can only have one y-value. The equations we have done in this class for lines and parabolas are functions. If you recall whenever we substituted a x-value into an equation, we obtained just one y-value.

If you have a graph, you can tell if it is a function by the vertical line test.
Vertical Line Test: If a vertical line can be drawn so that it intersects a graph more than once, the graph is not a function.

Not a function because a vertical line intersected the graph more than once.

Is a function because a vertical line will not intersect the graph more than one once.

There is new notation to show a function. It usually uses the letter f, but it can also use g or h. We have been writing equations like $y=3 x+4$ and in function notation it is written as:
$f(x)=3 x+4$.
It is important to realize that $f(x)$ does not mean \mathbf{f} times \boldsymbol{x}. It means the "function of x " or " f of x ". To evaluate a function you simply substitute in a value. Example:

Evaluate $f(2)$ for $f(x)=3 x+4$.

$$
\begin{aligned}
f(2) & =3(2)+4 \\
& =6+4 \\
& =10
\end{aligned}
$$

Make sure you substitute the 2 into the $f(x)$ on the left side of the equation as well as the right side.
The function we just used, $f(x)=3 x+4$, is called a function in symbolic representation. Functions can also be described in the following representations:

- Graphical
- Numerical
- Verbal
- Diagrammatical

The next page has problems in graphical and numerical form. Numerical form uses a table of values.

x	$y=h(x)$
-7	-3
0	64
1	64
-5	-4
17	0
20	3

Figure 2.

Figure 1.

Steps to Evaluate a Function for a Value

1. W.O.P.
2. If the function is given in symbolic form, that is, an equation is given, then substitute in the value for x and simplify. For example:

Evaluate $f(6)$ for $f(x)=3 x+4$.

$$
\begin{aligned}
f(6) & =3(6)+4 \\
& =18+4 \\
& =22
\end{aligned}
$$

3. If a graph is given, the value in the () is the x coordinate and find the corresponding y coordinate. For example, find $g(-3)$ using Figure 1.. The x coordinate will be -3 and the y coordinate on the graph is 2 . Thus $g(-3)=2$.
4. If a table is given the value in the () is the x value to be found in the x column and find the corresponding y value in the other column. For example, find $h(20)$ using Figure 2. The x value is 20 and the value of 3 is found in the other column. Thus
$h(20)=3$.

Steps to Solve a Function Given an Output of the Function

1. W.O.P.

2. If the function is given in symbolic form, that is, an equation is given, then substitute the function definition for $f(x)$ and solve for x. For example, solve $f(x)=10$, given $f(x)=3 x+4$.

Details for Solving	Notes
$f(x)=10$	
$(3 x+4)=10$	Substitute in $3 x+4$ for $f(x)$ and
$3 x+4=10$	solve.
$3 x+4-4=10-4$	
$3 x=6$	
$\frac{3 x}{3}=\frac{6}{3}$	
$x=2$	

The solution set is $\{2\}$.
3. If a graph is given, then the output value is the y coordinate; find the corresponding x coordinate. For example, solve $g(x)=2$ using Figure 1. You will notice that the y coordinate of 2 appears twice at $(-3,2)$ and $(1,2)$ and there will be two x values. The solution is $\{-3,1\}$.
4. If a table is given, then the output value is the y value. Find the corresponding x value. For example, solve $h(x)=-4$ using Figure 2. Find -4 in the right column and the corresponding x value is -7 . The solution is $\{-7\}$.

