Steps For Radical Equations

1. W.O.P.

- 2. Isolate one radical on one side of the equation by adding or subtracting terms on each side and dividing each side by number in front of radical.
- 3. If there is more than one radical in the equation, get one radical on one side and the other radical on the right side.
- 4. Put each side in a () and raise it to the power that is the same as the index of the radical. For example, a radical with an index of 3 like $\sqrt[3]{x-2}$ is raised to the 3rd power.
- 5. Simplify each side. The side with the one radical in a () will end up with just the radicand because squaring a square root or cubing a cube root are inverse operations of each other. When simplifying, make sure you expand a () when there are two or more terms, for example $(\sqrt{x} + 2)^2$ becomes, $(\sqrt{x} + 2)(\sqrt{x} + 2)$.
- 6. If a radical still remains, follow steps 2 through 5.
- 7. You will now end up with an equation with variable terms and constants and no radicals. This equation cab solved by earlier techniques.
- 8. The check is so critical here because some of the answers will not check.

Example: Solve $\sqrt[3]{4-3y}+2=1$	
Notes on Solving:	Solve
Write out problem.	$\sqrt[3]{4-3y}+2=1$
Subtract 2 from each side and simplify to isolate the radical on the left side.	$\sqrt[3]{4-3y}+2-2=1-2$
The radical is now isolated and each side is simplified	$\sqrt[3]{4-3y} = -1$
We now put each side in () and raise each () to the 3^{rd} power.	$\left(\sqrt[3]{4-3y}\right)^3 = (-1)^3$
Equation is now clear of radicals; solve as usual.	4 - 3y = -1
	4 - 4 - 3y = -1 - 4
	-3y = -5
	$\frac{-3y}{-3} = \frac{-5}{-3}$
	$y = \frac{5}{3}$

Check
$$\sqrt[3]{4-3y} + 2 = 1$$
 for $y = \frac{5}{3}$.
 $\sqrt[3]{4-3(\frac{5}{3})} + 2 \stackrel{?}{=} 1$
 $\sqrt[3]{4-5} + 2 \stackrel{?}{=} 1$
 $\sqrt[3]{-1} + 2 \stackrel{?}{=} 1$
 $-1 + 2 \stackrel{?}{=} 1$
 $1 = 1$ true

The solution set is $\left\{\frac{5}{3}\right\}$.